Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Alexander Iksanov"'
Publikováno v:
Modern Stochastics: Theory and Applications, Vol 11, Iss 2, Pp 217-245 (2024)
In the Karlin infinite occupancy scheme, balls are thrown independently into an infinite array of boxes $1,2,\dots $ , with probability ${p_{k}}$ of hitting the box k. For $j,n\in \mathbb{N}$, denote by ${\mathcal{K}_{j}^{\ast }}(n)$ the number of bo
Externí odkaz:
https://doaj.org/article/8e3aa3993108416daf2cf746b15fcd68
Publikováno v:
Modern Stochastics: Theory and Applications, Vol 10, Iss 4, Pp 397-411 (2023)
We introduce a branching process in a sparse random environment as an intermediate model between a Galton–Watson process and a branching process in a random environment. In the critical case we investigate the survival probability and prove Yaglom-
Externí odkaz:
https://doaj.org/article/d76b2fcd49f94a4884d0e6857af45dd4
Autor:
Oksana Braganets, Alexander Iksanov
Publikováno v:
Austrian Journal of Statistics, Vol 52, Iss SI (2023)
We investigate an infinite balls-in-boxes scheme, in which boxes are arranged in nested hierarchy and random probabilities of boxes are defined in terms of iterated fragmentation of a unit mass. Gnedin and Iksanov (2020) obtained a multivariate funct
Externí odkaz:
https://doaj.org/article/4f5b534be6f447c4a78107d17e4c270a
Autor:
Alexander Iksanov, Andrey Pilipenko
Publikováno v:
Stochastic Processes and their Applications. 156:44-68
Publikováno v:
Stochastic Processes and their Applications. 153:283-320
Publikováno v:
Journal of Number Theory. 233:301-336
Let B n ( m ) be a set picked uniformly at random among all m-elements subsets of { 1 , 2 , … , n } . We provide a pathwise construction of the collection ( B n ( m ) ) 1 ⩽ m ⩽ n and prove that the logarithm of the least common multiple of the
Publikováno v:
Stochastics. 94:1077-1101
Autor:
Bohdan Rashytov, Alexander Iksanov
Publikováno v:
Ukrains’kyi Matematychnyi Zhurnal. 73:160-178
УДК 519.27 Загальним процесом дробового ефекту ми називаємо згортку детермінованої функції, що належить простору Скорохода, та локально с
Autor:
Alexander Gnedin, Alexander Iksanov
Publikováno v:
Probability Theory and Related Fields. 177:855-890
We consider an infinite balls-in-boxes occupancy scheme with boxes organised in nested hierarchy, and random probabilities of boxes defined in terms of iterated fragmentation of a unit mass. We obtain a multivariate functional limit theorem for the c
Let $\xi_1$, $\xi_2,\ldots$ be i.i.d. random variables of zero mean and finite variance and $\eta_1$, $\eta_2,\ldots$ positive i.i.d. random variables whose distribution belongs to the domain of attraction of an $\alpha$-stable distribution, $\alpha\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::762bbfd032433f7003f867ce104d6f6e
http://arxiv.org/abs/2107.00760
http://arxiv.org/abs/2107.00760