Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Alexander Hock"'
Autor:
Alexander Hock
Publikováno v:
Enumerative Combinatorics and Applications, Vol 5, Iss 1, p Article #S2R5 (2024)
Externí odkaz:
https://doaj.org/article/bc13def5e12f4a9c97c83fe2903ea5e1
Autor:
Alexander Hock
Publikováno v:
SciPost Physics, Vol 17, Iss 2, p 065 (2024)
For a given spectral curve, the theory of topological recursion generates two different families $\omega_{g,n}$ and $\omega_{g,n}^\vee$ of multi-differentials, which are for algebraic spectral curves related via the universal $x-y$ duality formula. W
Externí odkaz:
https://doaj.org/article/3a793dd4b6f9492ba640d7d0ed29e473
Publikováno v:
Journal of High Energy Physics, Vol 2020, Iss 1, Pp 1-17 (2020)
Abstract Previously the exact solution of the planar sector of the self-dual Φ4-model on 4-dimensional Moyal space was established up to the solution of a Fredholm integral equation. This paper solves, for any coupling constant λ > − 1 π $$ \fra
Externí odkaz:
https://doaj.org/article/241252b62bdf410f86acd4dae2ca6dcd
Autor:
Alexander Hock, Raimar Wulkenhaar
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 78, Iss 7, Pp 1-12 (2018)
Abstract We introduce the 3-colour noncommutative quantum field theory model in two dimensions. For this model we prove a generalised Ward–Takahashi identity, which is special to coloured noncommutative QFT models. It reduces to the usual Ward–Ta
Externí odkaz:
https://doaj.org/article/fefea1510cd04cc1a953f059914e3bdf
Autor:
Branahl, Johannes, Alexander Hock
Publikováno v:
INSPIRE-HEP
We prove that the Langmann-Szabo-Zarembo (LSZ) model with quartic potential, a toy model for a quantum field theory on noncommutative spaces grasped as a complex matrix model, obeys topological recursion of Chekhov, Eynard and Orantin. By introducing
Publikováno v:
Annales de l’Institut Henri Poincaré D. 9:47-72
Correlation functions in a dynamic quartic matrix model are obtained from the two-point function through a recurrence relation. This paper gives the explicit solution of the recurrence by mapping it bijectively to a two-fold nested combinatorial stru
Autor:
Alexander Hock
Let $W_{g,n}$ be the correlators computed by Topological Recursion for some given spectral curve $(x,y)$ and $W^\vee_{g,n}$ for $(y,x)$, where the role of $x,y$ is inverted. These two sets of correlators $W_{g,n}$ and $W^\vee_{g,n}$ are related by th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::93914c74cdace7bfa86f8b5eb9dab664
http://arxiv.org/abs/2211.08917
http://arxiv.org/abs/2211.08917
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications.
The analogue of Kontsevich's matrix Airy function, with the cubic potential $\operatorname{Tr}\big(\Phi^3\big)$ replaced by a quartic term $\operatorname{Tr}\big(\Phi^4\big)$ with the same covariance, provides a toy model for quantum field theory in
We review the construction of the $\lambda\phi^4$-model on noncommutative geometries via exact solutions of Dyson-Schwinger equations and explain how this construction relates via (blobbed) topological recursion to problems in algebraic and enumerati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3bf87b931825a3e8182ffd65b27943e
We provide strong evidence for the conjecture that the analogue of Kontsevich's matrix Airy function, with the cubic potential $\mathrm{Tr}(\Phi^3)$ replaced by a quartic term $\mathrm{Tr}(\Phi^4)$, obeys the blobbed topological recursion of Borot an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::086f85d5fa41b6357de899952824581b
http://arxiv.org/abs/2008.12201
http://arxiv.org/abs/2008.12201