Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Alexander Heinlein"'
Publikováno v:
SIAM Journal on Scientific Computing. :S173-S198
Publikováno v:
SIAM Journal on Scientific Computing. :S152-S172
Publikováno v:
PAMM. 23
Publikováno v:
SIAM Journal on Scientific Computing. 43:S816-S838
The hybrid ML-FETI-DP algorithm combines the advantages of adaptive coarse spaces in domain decomposition methods and certain supervised machine learning techniques. Adaptive coarse spaces ensure robustness of highly scalable domain decomposition sol
Publikováno v:
ETNA - Electronic Transactions on Numerical Analysis. 56:1-27
The course of an epidemic can be often successfully described mathematically using compartment models. These models result in a system of ordinary differential equations. Two well-known examples are the SIR and the SEIR models. The transition rates
Autor:
Charlotte Neubacher, Philipp Franke, Alexander Heinlein, Axel Klawonn, Astrid Kiendler-Scharr, Anne-Caroline Lange
State of the art atmospheric chemistry transport models on regional scales as the EURAD-IM (EURopean Air pollution Dispersion-Inverse Model) simulate physical and chemical processes in the atmosphere to predict the dispersion of air pollutants. With
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c073544efe822fec58af4a2cf880e0df
https://doi.org/10.5194/egusphere-egu22-7113
https://doi.org/10.5194/egusphere-egu22-7113
Publikováno v:
ETNA - Electronic Transactions on Numerical Analysis. 53:562-591
The convergence rate of domain decomposition methods is generally determined by the eigenvalues of the preconditioned system. For second-order elliptic partial differential equations, coefficient discontinuities with a large contrast can lead to a de
Autor:
Martin Lanser, Alexander Heinlein
Publikováno v:
SIAM Journal on Scientific Computing. 42:A2461-A2488
Nonlinear domain decomposition (DD) methods, such as ASPIN (additive Schwarz preconditioned inexact Newton), RASPEN (restricted additive Schwarz preconditioned inexact Newton), nonlinear FETI-DP (f...
Publikováno v:
Domain Decomposition Methods in Science and Engineering XXVI ISBN: 9783030950248
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::965e44f38ad98940dad441c154e3dcaa
https://doi.org/10.1007/978-3-030-95025-5_54
https://doi.org/10.1007/978-3-030-95025-5_54
Publikováno v:
Electronic Transactions on Numerical Analysis, 56
A convolution neural network (CNN)-based approach for the construction of reduced order surrogate models for computational fluid dynamics (CFD) simulations is introduced; it is inspired by the approach of Guo, Li, and Iori [X. Guo, W. Li, and F. Iori