Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Alexander Bowring"'
Publikováno v:
NeuroImage, Vol 226, Iss , Pp 117477- (2021)
Current statistical inference methods for task-fMRI suffer from two fundamental limitations. First, the focus is solely on detection of non-zero signal or signal change, a problem that is exacerbated for large scale studies (e.g. UK Biobank, N=40,000
Externí odkaz:
https://doaj.org/article/b8276a638eb54994b9bcd730686966f3
Publikováno v:
Human Brain Mapping
Human Brain Mapping, Wiley, 2021, ⟨10.1002/hbm.25713⟩
Human Brain Mapping, 2021, ⟨10.1002/hbm.25713⟩
Human Brain Mapping, Wiley, 2021, ⟨10.1002/hbm.25713⟩
Human Brain Mapping, 2021, ⟨10.1002/hbm.25713⟩
Task‐fMRI researchers have great flexibility as to how they analyze their data, with multiple methodological options to choose from at each stage of the analysis workflow. While the development of tools and techniques has broadened our horizons for
Publikováno v:
Human Brain Mapping
A wealth of analysis tools are available to fMRI researchers in order to extract patterns of task variation and, ultimately, understand cognitive function. However, this "methodological plurality" comes with a drawback. While conceptually similar, tw
Autor:
Alexander Bowring
In this thesis, we aim to address two topical issues at the forefront of task-based functional magnetic resonance imaging (fMRI). The first of these is a growing apprehension within the field about the reproducibility of findings that make up the neu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::074890760b50095ef7c5e0dd499af5c8
https://ora.ox.ac.uk/objects/uuid:7ae7a233-f481-4481-ab08-f6c21862ccd8
https://ora.ox.ac.uk/objects/uuid:7ae7a233-f481-4481-ab08-f6c21862ccd8
While the development of analytical tools and techniques has broadened our horizons for comprehending the complexities of the human brain, a growing body of research in the neuroimaging literature has highlighted the pitfalls of such methodological p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9e370cbd61d4c42a8173046f40f10ed9
https://doi.org/10.1101/2021.07.27.453994
https://doi.org/10.1101/2021.07.27.453994
Publikováno v:
NeuroImage, Vol 226, Iss, Pp 117477-(2021)
Neuroimage
Neuroimage
Highlights • Confidence Sets (CSs) extend the idea of confidence intervals to fMRI maps. • For a Cohen’s d threshold c, upper CS asserts where d>c, lower CS where d
Current statistical inference methods for task-fMRI suffer from two fundam
Current statistical inference methods for task-fMRI suffer from two fundam
Autor:
Richard C. Reynolds, Jeremy Hogeveen, Joseph T. McGuire, Vittorio Iacovella, Gregory R. Samanez-Larkin, Cemal Koba, Paolo Avesani, Mikella A. Green, Margaret L. Schlichting, Claudio Toro-Serey, Tristan Glatard, Phui Cheng Lim, Emily A. Yearling, Simon B. Eickhoff, Katherine L. Bottenhorn, Susanne Weis, Andrew Erhart, Doris Pischedda, Mauricio R. Delgado, William A. Cunningham, Robert Langner, Matthew B. Wall, Amr Eed, Jorge Moll, Jeffrey B. Dennison, Wouter D. Weeda, Annabel B. Losecaat Vermeer, Anthony C. Juliano, Felix Hoffstaedter, Julia A. Camilleri, Nadège Bault, Cristian Buc Calderon, Xu Zhang, Gustav Tinghög, Vuong Truong, Leah Bakst, Stephan Heunis, Bertrand Thirion, Colin F. Camerer, Bradley C. Love, Tom Verguts, Luca Cecchetti, Patricia A. Reuter-Lorenz, Camille Maumet, Gabrielle Herman, Giacomo Handjaras, Michalis Kassinopoulos, Anthony Romyn, Xiangzhen Kong, Michael Notter, Nina Lauharatanahirun, Claire Donnat, Norberto Malpica, Jelle J. Goeman, Kamalaker Dadi, Michael Mack, Joke Durnez, Alberto De Luca, Margaret A. Sheridan, Shruti Ray, Colin Hawco, Enrico Glerean, J. Paul Hamilton, Qiang Shen, Sebastian Bobadilla-Suarez, Andrea Leo, David Wisniewski, Ayse Ilkay Isik, Lei Zhang, Bharat B. Biswal, Rotem Botvinik-Nezer, Flora Li, Bronson Harry, Andrew Jahn, Elise Lesage, Jean M. Vettel, Marco Barilari, Adrian I. Onicas, Susan Holmes, Khoi Vo, Aahana Bajracharya, Matthew Hughes, Rui Yuan, Nuri Erkut Kucukboyaci, Remi Gau, Sangsuk Yoon, Hongmi Lee, Alexandru D. Iordan, John Thorp, Russell A. Poldrack, Anna Dreber, Joshua E. Zosky, Dylan M. Nielson, Adriana S. Méndez Leal, Erin W. Dickie, Roeland Hancock, Tiago Bortolini, Kaustubh R. Patil, Monica Y.C. Li, Kristin N. Meyer, Fu Shiguang, Kenny Skagerlund, Juan Carlos de la Torre, Jennifer A. Silvers, R. Alison Adcock, Gustav Nilsonne, Zachary J. Cole, Emilio Sanz-Morales, Charles P. Davis, Michael Joseph, Sangil Lee, Tom Johnstone, Peder M. Isager, Jonathan E. Peelle, Emiliano Ricciardi, Scott A. Huettel, G. Matthew Fricke, Leonardo Tozzi, Brice A. Kuhl, Sagana Vijayarajah, Alexander Bowring, Jeanette A. Mumford, Blazej M. Baczkowski, Shabnam Hakimi, Sebastian Kupek, Michael Kirchler, Yanina Prystauka, Niall W. Duncan, Anna van 't Veer, Emily G. Brudner, Jamil P. Bhanji, Sarah M. Tashjian, Senne Braem, Paolo Papale, Simon R. Steinkamp, Georgios D. Mitsis, Kenneth S. L. Yuen, Magnus Johannesson, David J. White, Alec Smith, Krzysztof J. Gorgolewski, Alexander Leemans, Robert W. Cox, Emanuele Olivetti, Luca Turella, Juergen Huber, Tom Schonberg, David V. Smith, Lysia Demetriou, Peter Sokol-Hessner, Juergen Dukart, Glad Mihai, Taylor Salo, Jean-Baptiste Poline, Angela R. Laird, Sergej A.E. Golowin, Sarah Genon, Adriana Galván, Claus Lamm, Joseph W. Kable, Roni Iwanir, Theo Marins, Matthew R. Johnson, Anais Rodriguez-Thompson, Benjamin Meyer, Stefan Czoschke, Loreen Tisdall, Douglas H. Schultz, Evan N. Lintz, Derek Beaton, Peer Herholz, Olivia Guest, Jenny R. Rieck, Laura Fontanesi, Ekaterina Dobryakova, Alexandre Pérez, Olivier Collignon, Xin Di, Ruud Berkers, Sheryl B. Ball, Carlos González-García, Schuyler W. Liphardt, Edna C. Cieslik, Roland G. Benoit, João F. Guassi Moreira, Helena Melero, Jaime J. Castrellon, Hayley R. Brooks, Chuan-Peng Hu, Felix Holzmeister, Cheryl L. Grady, Thomas E. Nichols, Alba Xifra-Porxas, Steven H. Tompson, Kelsey McDonald, Julia Beitner, Timothy R. Koscik
Publikováno v:
Nature
Nature, 2020, 582 (7810), pp.84-88. ⟨10.1038/s41586-020-2314-9⟩
Nature, Vol. 582, No. 7810
Nature 582, 84–88 (2020). doi:10.1038/s41586-020-2314-9
Nature, 582(7810), 84-88. NATURE RESEARCH
Nature, Nature Publishing Group, 2020, 582 (7810), pp.84-88. ⟨10.1038/s41586-020-2314-9⟩
Nature, 582(7810), 84-88. Nature Publishing Group
Nature, 582(7810), 84-88. NATURE PORTFOLIO
bioRxiv
Digital.CSIC. Repositorio Institucional del CSIC
instname
Nature, 2020, 582 (7810), pp.84-88. ⟨10.1038/s41586-020-2314-9⟩
Nature, Vol. 582, No. 7810
Nature
Nature, 582(7810), 84-88. NATURE RESEARCH
Nature, Nature Publishing Group, 2020, 582 (7810), pp.84-88. ⟨10.1038/s41586-020-2314-9⟩
Nature, 582(7810), 84-88. Nature Publishing Group
Nature, 582(7810), 84-88. NATURE PORTFOLIO
bioRxiv
Digital.CSIC. Repositorio Institucional del CSIC
instname
Botvinik-Nezer, Rotem et al.
Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 ind
Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 ind
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2f510d975b4de2cc451be32f6661fb74
https://hdl.handle.net/1887/3448879
https://hdl.handle.net/1887/3448879
Publikováno v:
Neuroimage
The mass-univariate approach for functional magnetic resonance imaging (fMRI) analysis remains a widely used statistical tool within neuroimaging. However, this method suffers from at least two fundamental limitations: First, with sufficient sample s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c4fc64eff908b59b9c4bbfe1a52e7042
https://doi.org/10.1101/631473
https://doi.org/10.1101/631473
Publikováno v:
Human Brain Mapping
Human Brain Mapping, Wiley, 2019, 40 (11), pp.3362-3384. ⟨10.1002/hbm.24603⟩
Human Brain Mapping, 2019, 40 (11), pp.3362-3384. ⟨10.1002/hbm.24603⟩
bioRxiv
Hyper Article en Ligne-Sciences de l'Homme et de la Soci??t??
Hyper Article en Ligne
Human Brain Mapping, Wiley, 2019, 40 (11), pp.3362-3384. ⟨10.1002/hbm.24603⟩
Human Brain Mapping, 2019, 40 (11), pp.3362-3384. ⟨10.1002/hbm.24603⟩
bioRxiv
Hyper Article en Ligne-Sciences de l'Homme et de la Soci??t??
Hyper Article en Ligne
This project links resources associated with paper of the same title: Bowring, A., Maumet, C., & Nichols, T. E. (2019). Exploring the impact of analysis software on task fMRI results. Human Brain Mapping, (April), hbm.24603. https://doi.org/10.1002/h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6cd72e4ab686708227fa0d18203cc41d
https://www.hal.inserm.fr/inserm-01760535v2/document
https://www.hal.inserm.fr/inserm-01760535v2/document
Publikováno v:
OHBM 2018-24th Annual Meeting of the Organization for Human Brain Mapping
OHBM 2018-24th Annual Meeting of the Organization for Human Brain Mapping, Jun 2018, Singapore, Singapore. pp.1-3
www.humanbrainmapping.org/OHBM2018/
HAL
OHBM 2018-24th Annual Meeting of the Organization for Human Brain Mapping, Jun 2018, Singapore, Singapore. pp.1-3
www.humanbrainmapping.org/OHBM2018/
HAL
International audience; A plethora of tools and techniques are now available to process and model fMRI data. However, this ‘methodological plurality’ has come with a drawback. Application of different analysis pipelines (Carp, 2012), alterations
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8490782cb8dff16b27828024c1cd9ef1
https://www.hal.inserm.fr/inserm-01933019
https://www.hal.inserm.fr/inserm-01933019