Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Alexander Andreopoulos"'
Autor:
Peter J. Carlson, Michael DeBole, John V. Arthur, Myron D. Flickner, Scott Lekuch, Jeffrey L. McKinstry, Andrew S. Cassidy, Michael Mastro, Jeff Kusnitz, Brian Taba, Carmelo di Nolfo, Rathinakumar Appuswamy, Jun Sawada, Steven K. Esser, Pallab Datta, Brent Paulovicks, Klamo Jennifer, Kai Schleupen, Kevin L. Holland, Arnon Amir, Guillaume J. Garreau, Filipp Akopyan, Dharmendra S. Modha, Benjamin G. Shaw, Alexander Andreopoulos, Tapan K. Nayak, Carlos Tadeo Ortega Otero, William P. Risk
Publikováno v:
Computer. 52:20-29
IBM's brain-inspired processor is a massively parallel neural network inference engine containing 1 million spiking neurons and 256 million low-precision synapses. Now, after a decade of fundamental research spanning neuroscience, architecture, chips
Autor:
Bryan L. Jackson, Andrew S. Cassidy, John V. Arthur, Myron D. Flickner, Jack Sampson, R Davis, Dharmendra S. Modha, Alexander Andreopoulos, Wei-Yu Tsai, Michael DeBole, Vijaykrishnan Narayanan
Publikováno v:
IEEE Transactions on Computers. 66:996-1007
Deep neural networks (DNN) have been shown to be very effective at solving challenging problems in several areas of computing, including vision, speech, and natural language processing. However, traditional platforms for implementing these DNNs are o
Publikováno v:
ICCV Workshops
This paper proposes that despite the success of deep learning methods in computer vision, the dominance we see would not have been possible by the methods of deep learning alone: the tacit change has been the evolution of empirical practice in comput
Publikováno v:
CVPR
We introduce a stereo correspondence system implemented fully on event-based digital hardware, using a fully graph-based non von-Neumann computation model, where no frames, arrays, or any other such data-structures are used. This is the first time th
Autor:
Michael DeBole, Alexander Andreopoulos, David Berg, Brian Taba, Arnon Amir, Jeffrey L. McKinstry, Marcela Mendoza, Timothy Melano, Dharmendra S. Modha, Tapan K. Nayak, Jeff Kusnitz, Steve K. Esser, Guillaume Garreau, Tobi Delbruck, Myron D. Flickner, Carmelo di Nolfo
Publikováno v:
CVPR
We present the first gesture recognition system implemented end-to-end on event-based hardware, using a TrueNorth neurosynaptic processor to recognize hand gestures in real-time at low power from events streamed live by a Dynamic Vision Sensor (DVS).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e375371de0f2cc1090ac170933a7a400
https://www.zora.uzh.ch/id/eprint/149342/
https://www.zora.uzh.ch/id/eprint/149342/
Publikováno v:
Computer Vision and Image Understanding. 117:827-891
Object recognition systems constitute a deeply entrenched and omnipresent component of modern intelligent systems. Research on object recognition algorithms has led to advances in factory and office automation through the creation of optical characte
Autor:
Jun Sawada, Filipp Akopyan, Andrew S. Cassidy, Brian Taba, Michael V. Debole, Pallab Datta, Rodrigo Alvarez-Icaza, Arnon Amir, John V. Arthur, Alexander Andreopoulos, Rathinakumar Appuswamy, Heinz Baier, Davis Barch, David J. Berg, Carmelo Di Nolfo, Steven K. Esser, Myron Flickner, Thomas A. Horvath, Bryan L. Jackson, Jeff Kusnitz, Scott Lekuch, Michael Mastro, Timothy Melano, Paul A. Merolla, Steven E. Millman, Tapan K. Nayak, Norm Pass, Hartmut E. Penner, William P. Risk, Kai Schleupen, Benjamin Shaw, Hayley Wu, Brian Giera, Adam T. Moody, Nathan Mundhenk, Brian C. Van Essen, Eric X. Wang, David P. Widemann, Qing Wu, William E. Murphy, Jamie K. Infantolino, James A. Ross, Dale R. Shires, Manuel M. Vindiola, Raju Namburu, Dharmendra S. Modha
Publikováno v:
SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
Autor:
Bryan L. Jackson, Andrew S. Cassidy, Wei-Yu Tsai, Michael DeBole, Dharmendra S. Modha, Alexander Andreopoulos, Myron D. Flickner, Jack Sampson, Vijaykrishnan Narayanan, R Davis
Publikováno v:
IJCNN
With recent advances in silicon technology, previously intractable Deep Neural Network (DNN) solutions to complex visual, auditory, and other sensory perception problems are now practical for real-time, energy constrained systems. One such advancemen
Publikováno v:
IJCNN
We demonstrate how to map Local Binary Patterns (LBP), a class of leading feature extractors, onto a neuromorphic processor such as TrueNorth, a silicon expression of a non-von Neumann, low-power, spiking-based, brain-inspired processor. The applicat
Autor:
Andrew S. Cassidy, Carmelo di Nolfo, David Berg, Brian Taba, Paul A. Merolla, Pallab Datta, John V. Arthur, Myron D. Flickner, Jeffrey L. McKinstry, Rathinakumar Appuswamy, Arnon Amir, Steven K. Esser, Alexander Andreopoulos, R Davis, Dharmendra S. Modha, Timothy Melano
Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neuron
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9053823adca098d05381183eb15f2b06
http://arxiv.org/abs/1603.08270
http://arxiv.org/abs/1603.08270