Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Alex Kaltenbach"'
Autor:
Alex Kaltenbach
Publikováno v:
Mathematische Nachrichten. 295:1186-1210
Publikováno v:
Mathematical Models and Methods in Applied Sciences. 31:2297-2343
In this paper, we consider fully discrete approximations of abstract evolution equations, by means of a quasi non-conforming spatial approximation and finite differences in time (Rothe–Galerkin method). The main result is the convergence of the dis
Autor:
Alex Kaltenbach, Michael Růžička
In this paper, we investigate a Local Discontinuous Galerkin (LDG) approximation for systems with balanced Orlicz-structure. We propose a new numerical flux, which yields optimal convergence rates for linear ansatz functions. In particular, our appro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4f44a04a3bd1365c8929618af2e88bf
http://arxiv.org/abs/2204.09984
http://arxiv.org/abs/2204.09984
Autor:
Sören Bartels, Alex Kaltenbach
Recent quasi-optimal error estimates for the finite element approximation of total-variation regularized minimization problems using the Crouzeix--Raviart finite element require the existence of a Lipschitz continuous dual solution, which is not gene
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::66e28a47b98002da3b0cb494ece1e748
http://arxiv.org/abs/2201.04055
http://arxiv.org/abs/2201.04055
Autor:
Alex Kaltenbach, Michael Růžička
In this paper, we study the existence of weak solutions to a steady system that describes the motion of a micropolar electrorheological fluid. The constitutive relations for the stress tensors belong to the class of generalized Newtonian fluids. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6182e16656df85ed99d45189966606a
http://arxiv.org/abs/2112.08026
http://arxiv.org/abs/2112.08026
Autor:
Alex Kaltenbach
This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an i
Autor:
Michael Růžička, Alex Kaltenbach
Publikováno v:
Journal of Mathematical Analysis and Applications. 503:125355
We introduce function spaces for the treatment of non-linear parabolic partial differential equations with variable log–Holder continuous exponents that only incorporate information of the symmetric part of a gradient. As an analogue of Korn's ineq
Autor:
Michael Růžička, Alex Kaltenbach
In this note, we develop a framework which allows to prove an existence result for nonlinear evolution problems involving time-dependent, pseudo-monotone operators. This abstract existence result is applicable to a large class of concrete problems wh
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f4d3c63de66aa2b39167590e2bc1b63
http://arxiv.org/abs/1905.13591
http://arxiv.org/abs/1905.13591