Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Alevizos Bastas"'
Autor:
Alevizos Bastas, George A. Vouros
Publikováno v:
Aerospace, Vol 10, Iss 6, p 557 (2023)
With the aim to enhance automation in conflict detection and resolution (CD&R) tasks in the air traffic management (ATM) domain, this article studies the use of artificial intelligence and machine learning (AI/ML) methods to learn air traffic control
Externí odkaz:
https://doaj.org/article/49387d7accff480fbb8d1fe9c9029433
Autor:
Alevizos Bastas, George Vouros
Publikováno v:
Information Sciences. 613:763-785
Autor:
Vouros, Alevizos Bastas, George A.
Publikováno v:
Aerospace; Volume 10; Issue 6; Pages: 557
With the aim to enhance automation in conflict detection and resolution (CD&R) tasks in the air traffic management (ATM) domain, this article studies the use of artificial intelligence and machine learning (AI/ML) methods to learn air traffic control
Autor:
George Vouros, George Papadopoulos, Alevizos Bastas, Jose Manuel Cordero, Rubén Rodrigez Rodrigez
Dense and complex air traffic scenarios require higher levels of automation than those exhibited by tactical conflict detection and resolution (CD&R) tools that air traffic controllers (ATCO) use today. However, the air traffic control (ATC) domain,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::40d756ad88fa5373a9510959a7763c18
https://doi.org/10.3233/faia220066
https://doi.org/10.3233/faia220066
Autor:
Theocharis Kravaris, Jose Manuel Cordero, George A. Vouros, Alevizos Bastas, Christos Spatharis, Konstantinos Blekas
Publikováno v:
Neural Computing and Applications. 35:147-159
In this work we investigate the use of hierarchical multiagent reinforcement learning methods for the computation of policies to resolve congestion problems in the air traffic management domain. To address cases where the demand of airspace use excee
Publikováno v:
arXiv e
Autor:
Theocharis Kravaris, Alevizos Bastas, Konstantinos Blekas, George A. Vouros, Chistos Spatharis
Publikováno v:
IISA
In this work we investigate the use of hierarchical collaborative reinforcement learning methods (H-CMARL) for the computation of joint policies to resolve congestion problems in the Air Traffic Management (ATM) domain. In particular, to address case