Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Alessio Fiscella"'
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2019, Iss 25, Pp 1-13 (2019)
We investigate a class of critical stationary Kirchhoff fractional $p$-Laplacian problems in presence of a Hardy potential. By using a suitable version of the symmetric mountain-pass lemma due to Kajikiya, we obtain the existence of a sequence of inf
Externí odkaz:
https://doaj.org/article/4a3518801ac94a78bb618b533d2c4865
Publikováno v:
Mathematics, Vol 10, Iss 12, p 1973 (2022)
The aim of this paper is to investigate the existence and multiplicity of solutions for a bi-non-local problem. Precisely, we show that the above problem admits at least a non-trivial positive energy solution by using the mountain pass theorem. Furth
Externí odkaz:
https://doaj.org/article/f7bdfa1cdaf14d11a2ad55b16ec0ba42
Autor:
Alessio Fiscella, Eugenio Vecchi
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 153,, Pp 1-18 (2018)
This article concerns the bifurcation phenomena and the existence of multiple solutions for a non-local boundary value problem driven by the magnetic fractional Laplacian $(-\Delta)_{A}^{s}$. In particular, we consider $$ (-\Delta)_{A}^{s}u =\lambd
Externí odkaz:
https://doaj.org/article/b2f4f49923344351bae5b063d97f8832
Publikováno v:
Nonlinear Analysis: Real World Applications. 73:103914
In this paper we study quasilinear elliptic equations driven by the double phase operator involving a Choquard term of the form \begin{align*} -\mathcal{L}_{p,q}^{a}(u) + |u|^{p-2}u+ a(x) |u|^{q-2}u = \left( \int_{\mathbb{R}^N} \frac{F(y, u)}{|x-y|^\
Autor:
Alessio Fiscella, Andrea Pinamonti
In this paper, we study two classes of Kirchhoff-type problems set on a double-phase framework. That is, the functional space where finding solutions coincides with the Musielak–Orlicz–Sobolev space W01,H(Ω), with modular function H related to t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bbad50d31319aa411694cdf4f284c86
https://hdl.handle.net/10281/403659
https://hdl.handle.net/10281/403659
Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting
This paper deals with some classes of Kirchhoff type problems on a double phase setting and with nonlinear boundary conditions. Under general assumptions, we provide multiplicity results for such problems in the case when the perturbations exhibit a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed2e14b6e9766779da10c2395abb743f
https://hdl.handle.net/10281/403658
https://hdl.handle.net/10281/403658
Autor:
Alessio Fiscella, Pawan Kumar Mishra
Publikováno v:
manuscripta mathematica. 168:257-301
The paper deals with the following singular fractional problem $$\begin{aligned} \left\{ \begin{array}{lll} M\left( \displaystyle \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dxdy\right) (-\Delta )^{s} u-\mu \displaystyle \frac{u}{|x|
Publikováno v:
Complex Variables and Elliptic Equations. 67:500-516
his paper is concerned with the existence and multiplicity of solutions for the fractional variable order Choquard type problem (Formula presented.) where (Formula presented.) and (Formula presented.) are two fractional Laplace operators with variabl
In this paper, we study the existence of solutions for the new fractinal Robin equations with variable exponents. Moreover, we deal with the logarithm-type nonlinearity. In particular, we consider two cases: critical and subcritical cases.
No co
No co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e4e0ebdecc361a3e09866f0da3eea8b5
http://arxiv.org/abs/2202.01047
http://arxiv.org/abs/2202.01047
The paper deals with the following double phase problem $$\begin{aligned} \begin{aligned}&-m \left[ \int _\Omega \left( \frac{|\nabla u|^p}{p} + a(x) \frac{|\nabla u|^q}{q}\right) \,\mathrm {d}x\right] {\text{div}} \left( |\nabla u|^{p-2}\nabla u + a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aea3d1a57dd0623d71c921046b61b623
http://hdl.handle.net/10281/380520
http://hdl.handle.net/10281/380520