Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Alessandro, Lazaric"'
We propose a new globally convergent stochastic second order method. Our starting point is the development of a new Sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form $F(x)=0$ with $F:\mathbb{R}^p \rightarrow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e7e608f4184eaafffd252babef283f3
Publikováno v:
AAAI
In many fields such as digital marketing, healthcare, finance, and robotics, it is common to have a well-tested and reliable baseline policy running in production (e.g., a recommender system). Nonetheless, the baseline policy is often suboptimal. In
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::41fdf18f1530f1c9aa5ec47de20244e6
Publikováno v:
ACL 2019-57th Annual Meeting of the Association for Computational Linguistics
ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, Jul 2019, Florence, Italy
ACL (1)
HAL
ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, Jul 2019, Florence, Italy
ACL (1)
HAL
Sequence-processing neural networks led to remarkable progress on many NLP tasks. As a consequence, there has been increasing interest in understanding to what extent they process language as humans do. We aim here to uncover which biases such models
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40f59af8b4cb632aa908dc7ebdbfc3bd
https://hal.archives-ouvertes.fr/hal-02274157/file/1905.12330.pdf
https://hal.archives-ouvertes.fr/hal-02274157/file/1905.12330.pdf
Autor:
Marc Abeille, Alessandro Lazaric
Publikováno v:
AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics
AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics, Apr 2017, Fort Lauderdale, United States
Electron. J. Statist. 11, no. 2 (2017), 5165-5197
AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics, Apr 2017, Fort Lauderdale, United States
Electron. J. Statist. 11, no. 2 (2017), 5165-5197
International audience; We derive an alternative proof for the regret of Thompson sampling (\ts) in the stochastic linear bandit setting. While we obtain a regret bound of order $\wt{O}(d^{3/2}\sqrt{T})$ as in previous results, the proof sheds new li
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::87799a182381b971fab8c58fce2f0248
https://hal.inria.fr/hal-01493561
https://hal.inria.fr/hal-01493561
Publikováno v:
SSRN Electronic Journal.
We introduce a generic solver for dynamic portfolio allocation problems when the market exhibits return predictability, price impact and partial observability. We assume that the price modeling can be encoded into a linear state-space and we demonstr
Publikováno v:
NIPS-Advances in Neural Information Processing Systems 26
NIPS-Advances in Neural Information Processing Systems 26, Dec 2014, Montreal, Canada
Scopus-Elsevier
NIPS-Advances in Neural Information Processing Systems 26, Dec 2014, Montreal, Canada
Scopus-Elsevier
International audience; In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks and exploit their similarity to improve the performance w.r.t.\ single-task learning. In this paper we investigate the case w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb412149ff1ffdc6c43b04a9534c563a
https://hal.inria.fr/hal-01073513/document
https://hal.inria.fr/hal-01073513/document
Publikováno v:
Artificial Intelligence
Artificial Intelligence, 2015, 227, pp.93-139. ⟨10.1016/j.artint.2015.05.012⟩
Artificial Intelligence, Elsevier, 2015, 227, pp.93-139. ⟨10.1016/j.artint.2015.05.012⟩
Artificial Intelligence, 2015, 227, pp.93-139. ⟨10.1016/j.artint.2015.05.012⟩
Artificial Intelligence, Elsevier, 2015, 227, pp.93-139. ⟨10.1016/j.artint.2015.05.012⟩
International audience; Sponsored Search Auctions (SSAs) constitute one of the most successful applications of microeconomic mechanisms. In mechanism design, auctions are usually designed to incentivize advertisers to bid their truthful valuations an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bc3ca4fc3fe5366665da4b558c3754c5
http://arxiv.org/abs/1405.2484
http://arxiv.org/abs/1405.2484
Publikováno v:
ECML/PKDD-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
ECML/PKDD-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2013, Prague, Czech Republic
Advanced Information Systems Engineering ISBN: 9783642387081
ECML/PKDD (1)
ECML/PKDD-European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2013, Prague, Czech Republic
Advanced Information Systems Engineering ISBN: 9783642387081
ECML/PKDD (1)
International audience; In some reinforcement learning problems an agent may be provided with a set of input policies, perhaps learned from prior experience or provided by advisors. We present a reinforcement learning with policy advice (RLPA) algori
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c5bed6cb28c2f4542695c81d5d5cfbf7
http://arxiv.org/abs/1305.1027
http://arxiv.org/abs/1305.1027
Autor:
Alessandro Lazaric, Rémi Munos
Publikováno v:
Journal of Computer and System Sciences
Journal of Computer and System Sciences, Elsevier, 2012, 78 (5), pp.1516-1537. ⟨10.1016/j.jcss.2011.12.027⟩
Journal of Computer and System Sciences, 2012, 78 (5), pp.1516-1537. ⟨10.1016/j.jcss.2011.12.027⟩
Journal of Computer and System Sciences, Elsevier, 2012, 78 (5), pp.1516-1537. ⟨10.1016/j.jcss.2011.12.027⟩
Journal of Computer and System Sciences, 2012, 78 (5), pp.1516-1537. ⟨10.1016/j.jcss.2011.12.027⟩
International audience; Most of the research in online learning is focused either on the problem of adversarial classification (i.e., both inputs and labels are arbitrarily chosen by an adversary) or on the traditional supervised learning problem in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8883592b023008c8bb261bc5bba0c6e2
https://hal.inria.fr/hal-00772046
https://hal.inria.fr/hal-00772046