Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Alessandra SESTINI"'
Autor:
Francesca Mazzia, Alessandra Sestini
Publikováno v:
Axioms, Vol 8, Iss 2, p 59 (2019)
The authors of the above mentioned paper specify that the considered class of one-step symmetric Hermite-Obreshkov methods satisfies the property of conjugate-symplecticity up to order p + r , where r = 2 and p is the order of the method. This genera
Externí odkaz:
https://doaj.org/article/b4592dd4199f46e687ac784dfa83707d
Autor:
Francesca Mazzia, Alessandra Sestini
Publikováno v:
Axioms, Vol 7, Iss 3, p 58 (2018)
The class of A-stable symmetric one-step Hermite–Obreshkov (HO) methods introduced by F. Loscalzo in 1968 for dealing with initial value problems is analyzed. Such schemes have the peculiarity of admitting a multiple knot spline extension collocati
Externí odkaz:
https://doaj.org/article/011dfff546df4640a9b457428fc8904d
Publikováno v:
Advances in Computational Mathematics. 48
Publikováno v:
Geometric Challenges in Isogeometric Analysis ISBN: 9783030923129
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9fc37bce339c318ebc6f31e78ae82ea4
http://hdl.handle.net/11365/1215814
http://hdl.handle.net/11365/1215814
Autor:
Cesare Bracco, Carlotta Giannelli, David Großmann, Sofia Imperatore, Dominik Mokriš, Alessandra Sestini
Publikováno v:
Mathematical and Computational Methods for Modelling, Approximation and Simulation ISBN: 9783030943387
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b84f1e7ef86c10f6dbfa315d081eebad
https://doi.org/10.1007/978-3-030-94339-4_3
https://doi.org/10.1007/978-3-030-94339-4_3
Publikováno v:
Journal of Computational and Applied Mathematics. 349:207-211
This introductory paper provides an overview of a selection of contributions presented at the 2nd International Conference on Subdivision, Geometric and Algebraic Methods, Isogeometric Analysis and Refinability in ITaly (SMART2017 - Gaeta, September
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030574635
In this paper we present a new class of cubature rules with the aim of accurately integrating weakly singular double integrals. In particular we focus on those integrals coming from the discretization of Boundary Integral Equations for 3D Laplace bou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d170000291e4158151afd48e50a6f655
https://doi.org/10.1007/978-3-030-57464-2_5
https://doi.org/10.1007/978-3-030-57464-2_5
Autor:
Antonella Falini, Maria Lucia Sampoli, Francesco Calabrò, Alessandra Sestini, Alessandra Aimi
In this paper, we study the construction of quadrature rules for the approximation of hypersingular integrals that occur when 2D Neumann or mixed Laplace problems are numerically solved using Boundary Element Methods. In particular the Galerkin discr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ead6e76ed28bf44218e374fd637ef27
http://hdl.handle.net/11588/822113
http://hdl.handle.net/11588/822113
Publikováno v:
Journal of Computational and Applied Mathematics. 338:153-167
We propose a new class of quadrature rules for the approximation of weakly and strongly singular integrals, based on the spline quasi-interpolation scheme introduced in Mazzia and Sestini (2009). These integrals in particular occur in the entries of
Publikováno v:
Computer Aided Geometric Design. 62:239-252
Automatic fitting techniques are required in many industrial applications, as for example, instrument calibration, data analysis, geometric modeling or reverse engineering. We present an error analysis of advanced techniques for scattered data approx