Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Aleksandra Orpel"'
Autor:
Aleksandra Orpel
Publikováno v:
Opuscula Mathematica, Vol 42, Iss 5, Pp 727-749 (2022)
We investigate the existence and multiplicity of positive stationary solutions for acertain class of convection-diffusion equations in exterior domains. This problem leads to the following elliptic equation \[\Delta u(x)+f(x,u(x))+g(x)x\cdot \nabla u
Externí odkaz:
https://doaj.org/article/8d56ce1c77cc4f318bcc85b007003d9e
Autor:
Aleksandra Orpel
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2017, Iss 39, Pp 1-13 (2017)
The paper is devoted to a system of nonlinear PDEs containing gradient terms. Applying the approach based on Sattinger's iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These
Externí odkaz:
https://doaj.org/article/76775c63e7ba43f0b08f1cf9b6615e6d
Autor:
Aleksandra Orpel
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2016, Iss 36, Pp 1-12 (2016)
We investigate the existence of positive solutions for the following class of nonlinear elliptic problems \[\operatorname{div}(a(\|x\|)\nabla u(x))+f(x,u(x))-(u(x))^{-\alpha}\|\nabla u(x)\|^{\beta}+g(\|x\|)x\cdot\nabla u(x)=0,\] where $x\in\mathbb{R}
Externí odkaz:
https://doaj.org/article/f29372635984409f84edebd35e49a677
Autor:
Aleksandra Orpel
Publikováno v:
Opuscula Mathematica, Vol 34, Iss 4, Pp 837-849 (2014)
We deal with the existence and the continuous dependence of solutions on functional parameters for boundary valued problems containing Sturm-Liouville equation. We apply these result to prove the existence of at least one solution for a certain class
Externí odkaz:
https://doaj.org/article/56b6d558e6b14e8282039e3a0bdebcfa
Autor:
Aleksandra Orpel
Publikováno v:
Opuscula Mathematica, Vol 26, Iss 2, Pp 351-359 (2006)
The continuous dependence of solutions for a certain class of elliptic PDE on functional parameters is studied in this paper. The main result is as follow: the sequence \(\{x_k\}_{k\in N}\) of solutions of the Dirichlet problem discussed here (corres
Externí odkaz:
https://doaj.org/article/a189b641f84e47feae9f17582b10587f
Autor:
Andrzej Nowakowski, Aleksandra Orpel
Publikováno v:
Electronic Journal of Differential Equations, Vol 2002, Iss 46, Pp 1-15 (2002)
Using variational methods, we study the existence of positive solutions for a nonlocal boundary-value problem with vector-valued response. We develop duality and variational principles for this problem and present a numerical version which enables th
Externí odkaz:
https://doaj.org/article/0f0267e4c43748618a9a6bba9cb54b37
Autor:
Anna Kaźmierczak, Aleksandra Orpel
Publikováno v:
Journal of Mathematical Chemistry. 60:1781-1799
We investigate the equation of the form $$(a(t)u^{\prime }(t))^{\prime }+Aa(t)u^{\prime }(t)+f(t,u(t))=0$$ ( a ( t ) u ′ ( t ) ) ′ + A a ( t ) u ′ ( t ) + f ( t , u ( t ) ) = 0 a.e. in (0, 1) with boundary conditions $$u^{\prime }(0)=0,$$ u ′
Autor:
Aleksandra Orpel
Publikováno v:
Mathematische Nachrichten. 294:2396-2412
Autor:
Aleksandra Orpel
Publikováno v:
Mathematical Methods in the Applied Sciences.
Autor:
Aleksandra Orpel
Publikováno v:
Journal of Mathematical Chemistry. 58:1420-1436
We deal with the existence of positive solutions for the following class of nonlinear equation $$u^{\prime \prime }(t)+Au^{\prime }(t)+g(t,u(t),v(t))=0$$ u ″ ( t ) + A u ′ ( t ) + g ( t , u ( t ) , v ( t ) ) = 0 a.e. in (0, 1), with boundary cond