Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Aleksandar, Ivic"'
Autor:
Aleksandar Ivić
Hardy's Z-function, related to the Riemann zeta-function ζ(s), was originally utilised by G. H. Hardy to show that ζ(s) has infinitely many zeros of the form ½+it. It is now amongst the most important functions of analytic number theory, and the R
Publikováno v:
2022 International Conference on Communications, Information, Electronic and Energy Systems (CIEES).
Publikováno v:
Proceedings on 18th International Conference on Industrial Systems – IS’20 ISBN: 9783030979461
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a9d194e221382c01a0055edc06f615d1
https://doi.org/10.1007/978-3-030-97947-8_69
https://doi.org/10.1007/978-3-030-97947-8_69
Autor:
Aleksandar Ivic
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2004, Iss 1, Pp 1-23 (2004)
Several estimates for the convolution function C [f(x)]:=∫1xf(y) f(x/y)(dy/y) and its iterates are obtained when f(x) is a suitable number-theoretic error term. We deal with the case of the asymptotic formula for ∫0T|ζ(1/2+it)|2kdt(k=1,2), the g
Externí odkaz:
https://doaj.org/article/94770b74ef95482aa9da97480fb80331
Autor:
Aleksandar, Ivic
Publikováno v:
Commentarii mathematici Universitatis Sancti Pauli = Rikkyo Daigaku sugaku zasshi. 60(1-2):61-76
Autor:
Aleksandar Ivic
Publikováno v:
Bulletin: Classe des sciences mathematiques et natturalles. 129:79-83
New proofs for the classical bounds P(x) ? x1/3, ?(x) ? h1/3 log x are given. Here P(x) denotes the error term in the classical circle, and ? (x) in the classical divisor problem. .
Autor:
Aleksandar Ivic
Publikováno v:
Bulletin: Classe des sciences mathematiques et natturalles. 127:17-29
Several problems involving E(T) and E2(T), the error terms in the mean square and mean fourth moment formula for |?(1/2 + it)|, are discussed. In particular it is proved that ?0T? E(t)E2(T)dt?T7/4(logT)7/2loglogT. .
Autor:
Akio, Fujii, Aleksandar, Ivic
Publikováno v:
Commentarii mathematici Universitatis Sancti Pauli = Rikkyo Daigaku sugaku zasshi. 49(1):43-60
Autor:
Aleksandar Ivic
'A thorough and easily accessible account.'—MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting w
Autor:
Aleksandar Ivic
Publikováno v:
The Theory of Hardy'sZ-Function
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bc235fcd64436079b139b1d7dc18f8c1
https://doi.org/10.1017/cbo9781139236973.009
https://doi.org/10.1017/cbo9781139236973.009