Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Aleksa Srdanov"'
Autor:
Aleksa Srdanov
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 6233-6243 (2020)
With $ p\left(n,k\right) $ denote the numerical value of the number of partitions of the natural number $ n $ on exactly $ k $ parts. Form an arithmetic progression of $ k $ natural numbers with an arbitrary first value $ x_1=p\left(j,k\right)$, and
Externí odkaz:
https://doaj.org/article/c0d11be964a74b198e6a7044fce99f02
Autor:
Aleksa Srdanov
Publikováno v:
AIMS Mathematics, Vol 5, Iss 3, Pp 2539-2568 (2020)
The fractal family $\left\{p\left(n,k\right), k \in \mathbb{N}\right\}$, describe a rule to calculate the number of partitions obtained by decomposing $n\in \mathbb{N}$, into exactly $k$ parts. In this paper, we will present a novel method for provin
Externí odkaz:
https://doaj.org/article/e3a8df51f84d4523b8972ff1197c9cda
Publikováno v:
International Journal of Mathematics Trends and Technology. 67:72-80
Autor:
Dragan Stojiljkovic, Aleksa Srdanov
Publikováno v:
International Journal of Mathematics Trends and Technology. 67:21-25
Publikováno v:
JP Journal of Algebra, Number Theory and Applications. 51:77-95
Autor:
V Nada Ratkovic-Kovacevic, M Aleksandra Jovanovic, R Radisa Stefanovic, S Aleksa Srdanov, M Dragan Milovanovic
Publikováno v:
Vojnotehnički glasnik. 66:399-414
Publikováno v:
Journal of Autonomous Intelligence. 3:1
The problem of indecisiveness is integral part in each scientific research. However, it is still not a certainty whether this problem has an objective nature. In this paper we will extend the analysis of the sources and causes of indecisiveness and d
Autor:
Aleksa Srdanov
Publikováno v:
Proceedings - Mathematical Sciences. 128
In this paper, a formula that generalizes the total number of partitions of a natural number and the number of all possible decompositions of a certain number of parts can be united in the same formula. An advantage of this formula compared to simila
Publikováno v:
2016 13th Symposium on Neural Networks and Applications (NEUREL).
In this paper a method to develop artificial intuition is suggested. In an attempt to emulate the trial and error, searching is combined with a random choice. It is used in initial steps of the search, which provides reaching the goal in fewer steps,
Publikováno v:
Global Journal of Advance Research on Classical & Modern Geometries; 2022, Vol. 11 Issue 1, p123-133, 11p