Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Alekos Vidras"'
Autor:
C. Tryfonos, Alekos Vidras
Publikováno v:
Computational Methods and Function Theory. 20:5-38
In the present paper we study the boundary behavior of a weighted Koppelman type integral with a specific choice of weight for a function $$\phi $$ that is integrable on a bounded domain $$D\subset \mathbb {C}^n$$ and is continuous on its $$\mathcal
Autor:
Alekos Vidras, Alain Yger
Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimension
Autor:
Alekos Vidras, Alain Yger
Publikováno v:
Mathematische Annalen
Mathematische Annalen, Springer Verlag, In press, ⟨10.1007/s00208-020-02137-8⟩
Mathematische Annalen, Springer Verlag, In press, ⟨10.1007/s00208-020-02137-8⟩
Using a modified Cauchy–Weil representation formula in a Weil polyhedron $${\varvec{D}}_f\subset U\subset \mathbb {C}^n$$ , we prove a generalized version of Lagrange interpolation formula (at any order) with respect to a discrete set defined by $$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a74e89e42a15cc3c43403bf78b41396
https://hal.archives-ouvertes.fr/hal-03110008
https://hal.archives-ouvertes.fr/hal-03110008
Autor:
Alekos Vidras
Publikováno v:
Complex Analysis and Operator Theory. 14
Let $$\Pi =\{z=x+iy\in \mathbb {C}:\;y>0\} $$ be the upper half-plane and the interval [a, b] be a subset of $$ \partial \Pi =\mathbb {R}$$ . We derive a Carleman integral representation formula for all holomorphic functions $$f\in {\mathcal H}(\Pi )
Autor:
N. Alexandrou, Alekos Vidras
Publikováno v:
Complex Analysis and Operator Theory. 13:431-478
Let $$T_{B}=\mathbb {R}^2\times i\{(y_1,y_2)\in \mathbb {R}^2 :y_1^2+y_2^2
Publikováno v:
Complex Analysis and Operator Theory. 8:1341-1366
Let $$\Omega \subset \mathbb {C}^n $$ be a bounded, strictly convex domain with $${{\mathcal {C}}}^3$$ boundary and $$\widetilde{\Omega }$$ be its dual complement. We prove that $$(H^p(\Omega ))^{\prime }=H^q(\widetilde{\Omega })$$ , where $$p>1$$ an
Autor:
Lev Aizenberg, Alekos Vidras
Publikováno v:
Complex Analysis and Dynamical Systems V. :1-24
Publikováno v:
Computational Methods and Function Theory. 9:65-74
We prove that the abscissas of Bohr and Rogosinski for ordinary Dirichlet series, mapping the right half-plane into the bounded convex domain $G\subset \mathbb{C} $ are independent of the domain $G$. Furthermore, we obtain new estimates about these a
Autor:
Lev Aizenberg, Alekos Vidras
Publikováno v:
Mathematische Nachrichten. 237:5-25
Autor:
Alain Yger, Alekos Vidras
Publikováno v:
Scopus-Elsevier
We use a D-module approach to discuss positive examples for the existence of the unrestricted limit of the integrals involved in the approximation to the Coleff-Herrera residual currents (in the complete intersection case.) Our results provide also a