Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Alejandro Passeggi"'
Publikováno v:
Journal of the London Mathematical Society. 107:1173-1241
Publikováno v:
Annales scientifiques de l'École Normale Supérieure. 54:1035-1049
We show that a toral homeomorphism which is homotopic to the identity and topologically semiconjugate to an irrational rotation of the circle is always a pseudo-rotation (i.e. its rotation set is a single point). In combination with recent results, t
Autor:
Alejandro Passeggi, Martín Sambarino
Publikováno v:
Ergodic Theory and Dynamical Systems. 40:2533-2540
We show that if there exists a counter example for the rational case of the Franks–Misiurewicz conjecture, then it must exhibit unbounded deviations in the complementary direction of its rotation set.
Publikováno v:
COLIBRI
Universidad de la República
instacron:Universidad de la República
Nonlinearity, 2021, Vol.34(3), pp.1366 [Peer Reviewed Journal]
Universidad de la República
instacron:Universidad de la República
Nonlinearity, 2021, Vol.34(3), pp.1366 [Peer Reviewed Journal]
For a continuous map on the unit interval or circle, we define the bifurcation set to be the collection of those interval holes whose surviving set is sensitive to arbitrarily small changes of their position. By assuming a global perspective and focu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::282ed41ad9b87f2ac4d48a2ed23b218d
https://ruj.uj.edu.pl/xmlui/handle/item/269754
https://ruj.uj.edu.pl/xmlui/handle/item/269754
Autor:
Alejandro Passeggi
Publikováno v:
Journal of the London Mathematical Society. 89:235-254
We prove the existence of an open and dense set D\subset? Homeo0(T2) (set of toral homeomorphisms homotopic to the identity) such that the rotation set of any element in D is a rational polygon. We also extend this result to the set of axiom A dif- f
Autor:
Alejandro Passeggi, Martín Sambarino
Publikováno v:
Fundamenta Mathematicae. 222:63-97
Publikováno v:
Mathematische Zeitschrift. 274:405-426
We provide a classification of minimal sets of homeomorphisms of the two-torus, in terms of the structure of their complement. We show that this structure is exactly one of the following types: (1) a disjoint union of topological disks, or (2) a disj
Publikováno v:
Geom. Topol. 22, no. 4 (2018), 2145-2186
We show that if $f$ is an annular homeomorphism admitting an attractor which is an irreducible annular continua with two different rotation numbers, then the entropy of $f$ is positive. Further, the entropy is shown to be associated to a $C^0$-robust
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ad1c7aab18e201084371a08f2303ca26
Autor:
Tobias Jäger, Alejandro Passeggi
In the context of the Franks-Misiurewicz Conjecture, we study homeomorphisms of the two-torus semiconjugate to an irrational rotation of the circle. As a special case, this conjecture asserts uniqueness of the rotation vector in this class of systems
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7eb9ad433c80684c76dfebf85c922e2d
Autor:
Alejandro Passeggi, Juliana Xavier
We classify minimal sets of (closed and oriented) hyperbolic surface homeomorphisms by studying the connected components of their complement. This extends the classification given by Jager et al. (Mat Z 274(1–2):405–426, 2013) in the torus. The c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7746ea892360e60515b8c783e4aec559
http://arxiv.org/abs/1208.1650
http://arxiv.org/abs/1208.1650