Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Alejandro Jiménez-Cano"'
Publikováno v:
Symmetry, Vol 16, Iss 10, p 1384 (2024)
In this work, we revise the concept of foliation and related aspects that are crucial when formulating the Hamiltonian evolution for various theories beyond General Relativity. In particular, we show the relation between the kinematic characteristics
Externí odkaz:
https://doaj.org/article/101e2ae53ffb4fd383c0a922fd6ba2b9
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 83, Iss 2, Pp 1-9 (2023)
Abstract We undertake the construction of quadratic parity-violating terms involving the curvature in the four-dimensional metric-affine gravity. We demonstrate that there are only 12 linearly independent scalars, plus an additional one that can be r
Externí odkaz:
https://doaj.org/article/05fb0e525e0c42e59b62652d56cd3b74
Autor:
Alejandro Jiménez-Cano
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 80, Iss 7, Pp 1-18 (2020)
Abstract In this paper we explore generalizations of metric structures of the gravitational wave type to geometries containing an independent connection. The aim is simply to establish a new category of connections compatible, according to some crite
Externí odkaz:
https://doaj.org/article/f685dc9a381044c2bbd248c529cb209c
Publikováno v:
Physics Letters B, Vol 795, Iss , Pp 42-48 (2019)
We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of t
Externí odkaz:
https://doaj.org/article/2e41bb3ee95e4011ad5bde2498c3d566
Autor:
Jose Beltrán Jiménez, Lavinia Heisenberg, Damianos Iosifidis, Alejandro Jiménez-Cano, Tomi S. Koivisto
Publikováno v:
Physics Letters B, Vol 805, Iss , Pp - (2020)
In this Letter we consider a general quadratic parity-preserving theory for a general flat connection. Imposing a local symmetry under the general linear group singles out the general teleparallel equivalent of General Relativity carrying both torsio
Externí odkaz:
https://doaj.org/article/29a581b6229d4ffcaede55c9ebb7c478
Autor:
Cecilia Bejarano, Adria Delhom, Alejandro Jiménez-Cano, Gonzalo J. Olmo, Diego Rubiera-Garcia
Publikováno v:
Physics Letters B, Vol 802, Iss , Pp - (2020)
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual
Externí odkaz:
https://doaj.org/article/aca9bab7781642e3bb648447a4f7628e
Autor:
Bert Janssen, Alejandro Jiménez-Cano
Publikováno v:
Physics Letters B, Vol 786, Iss , Pp 462-465 (2018)
We present a framework in which the projective symmetry of the Einstein–Hilbert action in metric-affine gravity is used to induce an effective coupling between the Dirac lagrangian and the Maxwell field. The effective U(1) gauge potential arises as
Externí odkaz:
https://doaj.org/article/c21bf4b8758f48b4855b6ffd4aa75ac4
Autor:
Antonio N. Bernal, Bert Janssen, Alejandro Jiménez-Cano, José Alberto Orejuela, Miguel Sánchez, Pablo Sánchez-Moreno
Publikováno v:
Physics Letters B, Vol 768, Iss C, Pp 280-287 (2017)
We study the most general solution for affine connections that are compatible with the variational principle in the Palatini formalism for the Einstein–Hilbert action (with possible minimally coupled matter terms). We find that there is a family of
Externí odkaz:
https://doaj.org/article/967b4410e3134dfa96b0dcbd6c5e80a0
Autor:
Bert Janssen, Alejandro Jiménez-Cano
Publikováno v:
Physics Letters B, Vol 798, Iss , Pp - (2019)
In this paper we prove that the k-th order metric-affine Lovelock Lagrangian is not a total derivative in the critical dimension n=2k in the presence of non-trivial non-metricity. We use a bottom-up approach, starting with the study of the simplest c
Externí odkaz:
https://doaj.org/article/0e0a16b6a8f347b298958ddbeccfde21
Autor:
Alejandro Jiménez Cano
In this review we consider the quadratic Metric-Affine Gauge gravity Lagrangian, which contains all the algebraic invariants up to quadratic order in torsion, nonmetricity and curvature. The goal will be to collect the known exact solutions for this
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::589fa12acf1612a1968ee4c00e0f5eb8
http://arxiv.org/abs/2203.03936
http://arxiv.org/abs/2203.03936