Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Alejandro Hernández-Tello"'
Publikováno v:
Logic Journal of the IGPL.
In 2016, Béziau introduces a restricted notion of paraconsistency, the so-called genuine paraconsistency. A logic is genuine paraconsistent if it rejects the laws $\varphi ,\neg \varphi \vdash \psi $ and $\vdash \neg (\varphi \land \neg \varphi )$.
Publikováno v:
Logica Universalis. 15:87-121
Genuine Paraconsistent logics $$\mathbf {L3A}$$ and $$\mathbf {L3B}$$ were defined in 2016 by Beziau et al, including only three logical connectives, namely, negation disjunction and conjunction. Afterwards in 2017 Hernandez-Tello et al, provide impl
Publikováno v:
Electronic Notes in Theoretical Computer Science. 354:61-74
In 2016 Beziau, introduce a restricted notion of paraconsistency, the so-called genuine paraconsistency. A logic is genuine paraconsistent if it rejects the laws φ,¬φ ⊢ ψ and ⊢ ¬(φ ∧ ¬φ). In that paper the author analyzes, among the thr
Autor:
Mauricio Osorio Galindo, José R. Arrazola Ramírez, Miguel Pérez-Gaspar, Alejandro Hernández-Tello
Publikováno v:
Logic Journal of the IGPL. 28:1218-1232
In memoriam José Arrazola Ramírez (1962–2018) The logic $\textbf{G}^{\prime}_3$ was introduced by Osorio et al. in 2008; it is a three-valued logic, closely related to the paraconsistent logic $\textbf{CG}^{\prime}_3$ introduced by Osorio et al.
Publikováno v:
Logica Universalis. 11:507-524
The authors of Beziau and Franceschetto (New directions in paraconsistent logic, vol 152, Springer, New Delhi, 2015) work with logics that have the property of not satisfying any of the formulations of the principle of non contradiction, Beziau and F