Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Alejandro H. Morales"'
Publikováno v:
Enumerative Combinatorics and Applications, Vol 2, Iss 3, p Article #S2R20 (2022)
Externí odkaz:
https://doaj.org/article/29f4f27a6b4c415788754a61fd01b9ed
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings, 28th... (2020)
We consider GLn (Fq)-analogues of certain factorization problems in the symmetric group Sn: ratherthan counting factorizations of the long cycle(1,2, . . . , n) given the number of cycles of each factor, we countfactorizations of a regular elliptic e
Externí odkaz:
https://doaj.org/article/57f563834e544bc2a979c0a0f359813d
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings, 28th... (2020)
The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over
Externí odkaz:
https://doaj.org/article/f3bbe52d07974a949637e48c9b615497
Autor:
Alejandro H. Morales, William Shi
Publikováno v:
Comptes Rendus. Mathématique. 359:823-851
Flow polytopes are an important class of polytopes in combinatorics whose lattice points and volumes have interesting properties and relations. The Chan-Robbins-Yuen (CRY) polytope is a flow polytope with normalized volume equal to the product of con
Publikováno v:
SIAM Journal on Discrete Mathematics
We introduce a class of posets, which includes both ribbon posets (skew shapes) and $d$-complete posets, such that their number of linear extensions is given by a determinant of a matrix whose entries are products of hook lengths. We also give $q$-an
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings, 27th..., Iss Proceedings (2015)
26 pages, 4 figures. v2 has typos fixed, updated references, and a final remarks section including remarks from previous sections
Externí odkaz:
https://doaj.org/article/d7c4ed022c644406b832225957142f4d
Autor:
Carolina Benedetti, Apoorva Khare, Alejandro H. Morales, Martha Yip, Christopher R. H. Hanusa, Pamela E. Harris, Rafael S. González D'León
Publikováno v:
Transactions of the American Mathematical Society. 372:3369-3404
We introduce new families of combinatorial objects whose enumeration computes volumes of flow polytopes. These objects provide an interpretation, based on parking functions, of Baldoni and Vergne's generalization of a volume formula originally due to
Autor:
Alejandro H. Morales, Karola Mészáros
Publikováno v:
Mathematische Zeitschrift. 293:1369-1401
The Lidskii formula for the type $$A_n$$ root system expresses the volume and Ehrhart polynomial of the flow polytope of the complete graph with nonnegative integer netflows in terms of Kostant partition functions. For every integer polytope the volu
Publikováno v:
Discrete & Computational Geometry. 62:128-163
We study an alternating sign matrix analogue of the Chan–Robbins–Yuen polytope, which we call the ASM-CRY polytope. We show that this polytope has Catalan many vertices and its volume is equal to the number of standard Young tableaus of staircase
Publikováno v:
Proceedings of the American Mathematical Society. 147:1377-1389
Denote by $u(n)$ the largest principal specialization of the Schubert polynomial: $ u(n) := \max_{w \in S_n} \mathfrak{S}_w(1,\ldots,1) $ Stanley conjectured in [arXiv:1704.00851] that there is a limit $\lim_{n\to \infty} \, \frac{1}{n^2} \log u(n),