Zobrazeno 1 - 10
of 1 420
pro vyhledávání: '"Aldaz Á"'
Autor:
Aldaz, J. M., Render, H.
We show that for all homogeneous polynomials $ f_{m}$ of degree $m$, in $d$ variables, and each $j = 1, \dots , d$, we have \begin{equation*} \left\langle x_{j}^{2}f_{m},f_{m}\right\rangle _{L^{2}\left( \mathbb{S}% ^{d-1}\right) } \geq \frac{\pi ^{2}
Externí odkaz:
http://arxiv.org/abs/2404.16735
We consider inequalities of Bombieri type for polynomials that need not be homogeneous, using the apolar inner product.
Comment: 9 pp
Comment: 9 pp
Externí odkaz:
http://arxiv.org/abs/2403.10584
Autor:
Aldaz, J. M., Caldera, A.
We characterize the geometrically doubling condition of a metric space in terms of the uniform $L^1$-boundedness of superaveraging operators, where uniform refers to the existence of bounds independent of the measure being considered.
Comment: 9
Comment: 9
Externí odkaz:
http://arxiv.org/abs/2403.10445
Autor:
Aldaz, J. M.
We explore boundedness properties in the context of metric measure spaces, of some natural operators of convolution type whose study is suggested by certain transformations used in computer vision.
Comment: 9 pp. To appear in Analysis Mathematic
Comment: 9 pp. To appear in Analysis Mathematic
Externí odkaz:
http://arxiv.org/abs/2403.10437
Autor:
Aldaz, J. M., Render, H.
The existence of decompositions of the form $f=P\cdot q+r$ with $P_k^{\ast}\left( D\right) r=0 $, where $f$ is entire, $P$ a polynomial and $P^{\ast}_k$ the principal part of $P$ with its coefficients conjugated, was achieved in \cite{AlRe23} under c
Externí odkaz:
http://arxiv.org/abs/2403.10419
Autor:
Aldaz, J. M., Render, H.
Publikováno v:
Analysis and Mathematical Physics (2023) 13:91
We continue the study initiated by H. S. Shapiro on Fischer decompositions of entire functions, showing that such decomposition exist in a weak sense (we do not prove uniqueness) under hypotheses regarding the order of the entire function $f$ to be e
Externí odkaz:
http://arxiv.org/abs/2403.10400
Autor:
Aldaz, J. M., Render, H.
Let $P$ be a fixed homogeneous polynomial. We present a sharp condition on $P$ guaranteeing the existence of asymptotically larger bounds in Bombieri's inequality, so for every homogeneous polynomial $q_m$ of degree $m$ we have \begin{equation*} \lef
Externí odkaz:
http://arxiv.org/abs/2402.19153
Autor:
Render, H., Aldaz, J. M.
Let $P_{2k}$ be a homogeneous polynomial of degree $2k$ and assume that there exist $C>0$, $D>0$ and $\alpha \ge 0$ such that \begin{equation*} \left\langle P_{2k}f_{m},f_{m}\right\rangle_{L^2(\mathbb{S}^{d-1})}\geq \frac{1}{C\left( m+D\right) ^{\alp
Externí odkaz:
http://arxiv.org/abs/2209.03134
Publikováno v:
In Engineering Structures 1 October 2024 316
Autor:
Brehme, Maren, Markó, Ábel, Osvald, Máté, Zimmermann, Günter, Weinzierl, Wolfgang, Aldaz, Santiago, Thiem, Stefan, Huenges, Ernst
Publikováno v:
In Geothermics June 2024 120