Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Alberto Vigneron-Tenorio"'
Autor:
Evelia R. GARCÍA BARROSO, Juan Ignacio GARCÍA-GARCÍA, Luis José SANTANA SÁNCHEZ, Alberto VIGNERON-TENORIO
Publikováno v:
Electronic Research Archive, Vol 31, Iss 4, Pp 2213-2229 (2023)
In their paper on the embeddings of the line in the plane, Abhyankar and Moh proved an important inequality, now known as the Abhyankar-Moh inequality, which can be stated in terms of the semigroup associated with the branch at infinity of a plane al
Externí odkaz:
https://doaj.org/article/a167237d5e884656b0e122aac4558d79
Publikováno v:
Mathematics, Vol 11, Iss 4, p 790 (2023)
The computation of ω-primality has been object of study, mainly, for numerical semigroups due to its multiple applications to the Factorization Theory. However, its asymptotic version is less well known. In this work, we study the asymptotic ω-prim
Externí odkaz:
https://doaj.org/article/4f12797bd5034e388e71685363f085ff
Publikováno v:
Symmetry, Vol 13, Iss 7, p 1125 (2021)
We propose necessary and sufficient conditions for an integer matrix to be decomposable in terms of its Hermite normal form. Specifically, to each integer matrix, we associate a symmetric integer matrix whose reducibility can be efficiently determine
Externí odkaz:
https://doaj.org/article/48e47c670eed4b558e7f7668545041cd
Publikováno v:
ACM Communications in Computer Algebra. 55:73-76
We introduce an algorithm for computing the ideals associated with some sumset semigroups. Our results allow us to study some additive properties of sumsets.
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 1134-1144 (2021)
Open Mathematics, vol. 19, no. 1, 2021, pp. 1134-1144
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
Open Mathematics, vol. 19, no. 1, 2021, pp. 1134-1144
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
Weierstrass semigroups are well known along the literature. We present a new family of non- Weierstrass semigroups which can be written as an intersection of Weierstrass semigroups. In addition, we provide methods for computing non-Weierstrass semigr
Publikováno v:
Collectanea Mathematica. 71:189-204
In this paper we study those submonoids of $$\mathbb {N}^d$$ with a nontrivial pseudo-Frobenius set. In the affine case, we prove that they are the affine semigroups whose associated algebra over a field has maximal projective dimension possible. We
Let $$A \subset \mathbb Z$$ A ⊂ Z be a finite subset. We denote by $${{\,\mathrm{\mathcal {B}}\,}}(A)$$ B ( A ) the set of all integers $$n \ge 2$$ n ≥ 2 such that $$|nA| > (2n-1)(|A|-1),$$ | n A | > ( 2 n - 1 ) ( | A | - 1 ) , where $$nA=A+\cdot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::afb4502963713f69555f88aa77f11494
https://hal.archives-ouvertes.fr/hal-03032801/document
https://hal.archives-ouvertes.fr/hal-03032801/document
Publikováno v:
J. Commut. Algebra 12, no. 3 (2020), 309-318
In this work, using the concept of multiple convex body semigroup, we present new families of Buchsbaum semigroups. We characterize Buchsbaum circle and convex polygonal semigroups and we describe algorithmic methods to check such characterizations.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::221ba95c79ee26b4af26d5e343de526a
https://projecteuclid.org/euclid.jca/1599271220
https://projecteuclid.org/euclid.jca/1599271220
Autor:
Alberto Vigneron-Tenorio, Juan Ignacio García-García, A. Sánchez-R.-Navarro, J. D. Díaz-Ramírez
Publikováno v:
Results in Mathematics. 75
A proportionally modular affine semigroup is the set of nonnegative integer solutions of a modular Diophantine inequality $$f_1x_1+\cdots +f_nx_n \bmod b \le g_1x_1+\cdots +g_nx_n$$ , where $$g_1,\dots ,g_n$$ , $$f_1,\ldots ,f_n\in \mathbb {Z}$$ , an
Publikováno v:
Mathematics 2020, 8(10), 1789
RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
Universidad de Cádiz
Mathematics, Vol 8, Iss 1789, p 1789 (2020)
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
Mathematics
Volume 8
Issue 10
RODIN: Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
Universidad de Cádiz
Mathematics, Vol 8, Iss 1789, p 1789 (2020)
RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz
instname
Mathematics
Volume 8
Issue 10
Let S=&lang
a1,&hellip
ap&rang
be a numerical semigroup, let s&isin
S and let Z(s) be its set of factorizations. The set of lengths is denoted by L(s)={L(x1,⋯,xp)∣(x1,⋯,xp)&isin
Z(s)}, where L(x1,⋯,xp)=x1+⋯+xp. The
a1,&hellip
ap&rang
be a numerical semigroup, let s&isin
S and let Z(s) be its set of factorizations. The set of lengths is denoted by L(s)={L(x1,⋯,xp)∣(x1,⋯,xp)&isin
Z(s)}, where L(x1,⋯,xp)=x1+⋯+xp. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43e1fc075ffc5beac2e71069856d6840
http://hdl.handle.net/10498/24081
http://hdl.handle.net/10498/24081