Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Alberto Perelli"'
Autor:
Jerzy Kaczorowski, Alberto Perelli
We explain the exact meaning of a statement we made in a previous paper on invariants, namely that a complex-valued function of the data of the functional equation of an L-function is an invariant if and only if it is stable under the multiplication
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::35dc1cd32aa55fada7fee9f274147e05
https://doi.org/10.21203/rs.3.rs-2719196/v1
https://doi.org/10.21203/rs.3.rs-2719196/v1
Publikováno v:
Transactions of the American Mathematical Society. 372:6981-6999
We prove an explicit formula, analogous to the classical explicit formula for $\psi(x)$, for the Ces\`aro-Riesz mean of any order $k>0$ of the number of representations of $n$ as a sum of two primes. Our approach is based on a double Mellin transform
Autor:
Jerzy Kaczorowski, Alberto Perelli
Publikováno v:
Banach Center Publications. 118:25-35
Autor:
Jerzy Kaczorowski, Alberto Perelli
Publikováno v:
Nagoya Mathematical Journal. 240:150-180
The standard twist $F(s,\unicode[STIX]{x1D6FC})$ of $L$-functions $F(s)$ in the Selberg class has several interesting properties and plays a central role in the Selberg class theory. It is therefore natural to study its finer analytic properties, for
Autor:
J. Kaczorowski, Alberto Perelli
Publikováno v:
Acta Arithmetica. 184:247-265
Autor:
Jerzy Kaczorowski, Alberto Perelli
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 299:117-131
A nonlinear twist F(s; f) of a function F(s) from the extended Selberg class S# is called internal if it belongs to S#. In a previous paper (2014) we showed that, inside a rather general class of nonlinear twists, the internal twists occur only in ve
We prove an extension of the Bourgain-Sarnak-Ziegler theorem and then apply it to bound certain polynomial exponential sums with modular coefficients.
15 pages. Final version. To appear in Quart. J. Math. Oxford
15 pages. Final version. To appear in Quart. J. Math. Oxford
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6d9a77e3c4cb94ca6436c51c9105f0f0
http://arxiv.org/abs/1902.10179
http://arxiv.org/abs/1902.10179
Autor:
Alberto Perelli, Giacomo Cherubini
We show that for a positive proportion of Laplace eigenvalues $\lambda_j$ the associated Hecke-Maass $L$-functions $L(s,u_j)$ approximate with arbitrary precision any target function $f(s)$ on a closed disc with center in $3/4$ and radius $r
Com
Com
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c5d28114ea5733ccb4e27f6eb93a2e3
http://hdl.handle.net/11567/945461
http://hdl.handle.net/11567/945461
Autor:
Jerzy Kaczorowski, Alberto Perelli
Publikováno v:
Journal of the European Mathematical Society. 18:1349-1389
We obtain the basic analytic properties, i.e. meromorphic continuation, polar structure and bounds for the order of growth, of all the nonlinear twists with exponents $\leq 1/d$ of the L-functions of any degree $d \geq 1$ in the extended Selberg clas
Autor:
Alberto Perelli
Lectures on the Riemann Zeta Function, by Henryk Iwaniec, University Lecture Series, Volume: 62, American Mathematical Society, Providence, RI, 2014, viii+119 pp., Softcover, ISBN 978-1-4704-1851.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38c34c3e2a860c760967496fc9f97246
https://hrj.episciences.org/2650
https://hrj.episciences.org/2650