Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Alberto, Farina"'
Autor:
Damiano Paolicelli, Giovanna Borriello, Raffaella Clerici, Elena Colombo, Davide Croce, Emanuele D’Amico, Nicola De Rossi, Alessia Di Sapio, Giuseppe Fenu, Davide Maimone, Girolama A. Marfia, Marcello Moccia, Paola Perini, Maria G. Piscaglia, Lorenzo Razzolini, Massimo Riccaboni, Elisabetta Signoriello, Gianluca Agostoni, Alberto Farina, Margaret Mondino, Francesco Berruto, Alessia Tettamanti, Francesca Donnaloja, Carla Tortorella
Publikováno v:
Neurology and Therapy, Vol 13, Iss 5, Pp 1415-1430 (2024)
Abstract Introduction Multiple sclerosis (MS) is a chronic neurodegenerative disease that leads to impaired cognitive function and accumulation of disability, with significant socioeconomic burden. Serious unmet need in the context of managing MS has
Externí odkaz:
https://doaj.org/article/0d2f106941e5448cae52c92ecbd32ca4
Autor:
Alberto Farina
Publikováno v:
Mathematics in Engineering, Vol 2, Iss 4, Pp 709-721 (2020)
We prove some new results about the growth, the monotonicity and the symmetry of (possibly) unbounded non-negative solutions of −∆u = f (u) on half-spaces, where f is merely a locally Lipschitz continuous function. Our proofs are based on a compa
Externí odkaz:
https://doaj.org/article/1b7f5724d20f4292a43fbf398f5949c4
Autor:
Alberto Farina, Federico Moro, Frederick Fasslrinner, Annahita Sedghi, Miluska Bromley, Timo Siepmann
Publikováno v:
Pharmacology Research & Perspectives, Vol 9, Iss 4, Pp n/a-n/a (2021)
Abstract We aimed to evaluate the quality of clinical evidence that substantiated approval of cancer medicines by the European Medicines Agency (EMA) in the last decade. We performed a systematic review and data synthesis of EMA documents in agreemen
Externí odkaz:
https://doaj.org/article/5715cc312b3140ea947895803ac37af7
Autor:
Alberto Farina, Jesús Ocáriz
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 41:1929-1937
In this paper we provide some local and global splitting results on complete Riemannian manifolds with nonnegative Ricci curvature. We achieve the splitting through the analysis of some pointwise inequalities of Modica type which hold true for every
Publikováno v:
Communications in Analysis and Geometry. 29:761-777
We prove a flatness result for entire nonlocal minimal graphs having some partial derivatives bounded from either above or below. This result generalizes fractional versions of classical theorems due to Bernstein and Moser. Our arguments rely on a ge
Autor:
Alberto Farina, Amedeo Soldi, Andrea Fabbri, Elisabetta Bonafede, Antonio Voza, Sossio Serra, Germana Ruggiano, Antonella Sblendido
Publikováno v:
Journal of Pain Research
Sossio Serra,1 Antonio Voza,2 Germana Ruggiano,3 Andrea Fabbri,4 Elisabetta Bonafede,5 Antonella Sblendido,6 Amedeo Soldi,6 Alberto Farina6 On behalf of the MEDITA Study Group1Emergency Department, Maurizio Bufalini Hospital, Cesena, Italy; 2Emergenc
Autor:
Alberto Farina, Frank Coffey, Sergio Garcia Collado, Umberto Restelli, Giovanni Sbrana, Andrea Fabbri, Germana Ruggiano, Franco Marinangeli, Agnès Ricard-Hibon
Publikováno v:
Journal of Pain Research. 13:1547-1555
Adequate treatment of trauma pain is an integral part of the management of trauma patients, not just for ethical reasons but also because undertreated pain can lead to increased morbidities and worse long-term outcomes. Trauma pain management present
We prove that 0 the only classical solution of the Lane-Emden equation in the half-space which is stable outside a compact set. We also consider weak solutions and the case of general cones.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3be6734aeb6631c440743a033f0757b0
In this paper we prove the monotonicity of positive solutions to $ -��_p u = f(u) $ in half-spaces under zero Dirichlet boundary conditions, for $(2N+2)/(N+2) < p < 2$ and for a general class of regular changing-sign nonlinearities $f$. The techn
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::947fec0f15de8384ac3dcca8ad32bedb
http://arxiv.org/abs/2112.09552
http://arxiv.org/abs/2112.09552
Autor:
Alberto Farina, Miguel Angel Navarro
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 40:1233-1256
We prove some new Liouville-type theorems for stable radial solutions of \begin{document}$ - {{\rm{div}}}{\left(\frac{\nabla u}{\sqrt{1+\left\vert{\nabla u}\right\vert^2}}\right)} = f(u)\mbox{ in } \mathbb R^N, $\end{document} where \begin{document}$