Zobrazeno 1 - 10
of 260
pro vyhledávání: '"Albert V. Davydov"'
Autor:
Willie B. Beeson, Dinesh Bista, Huairuo Zhang, Sergiy Krylyuk, Albert V. Davydov, Gen Yin, Kai Liu
Publikováno v:
Advanced Science, Vol 11, Iss 34, Pp n/a-n/a (2024)
Abstract The vast high entropy alloy (HEA) composition space is promising for discovery of new material phases with unique properties. This study explores the potential to achieve rare‐earth‐free high magnetic anisotropy materials in single‐pha
Externí odkaz:
https://doaj.org/article/5b0bb4703023428cadf8ef98b97d77d5
Autor:
Xiangjin Wu, Asir Intisar Khan, Hengyuan Lee, Chen-Feng Hsu, Huairuo Zhang, Heshan Yu, Neel Roy, Albert V. Davydov, Ichiro Takeuchi, Xinyu Bao, H.-S. Philip Wong, Eric Pop
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-8 (2024)
Abstract Data-centric applications are pushing the limits of energy-efficiency in today’s computing systems, including those based on phase-change memory (PCM). This technology must achieve low-power and stable operation at nanoscale dimensions to
Externí odkaz:
https://doaj.org/article/3f2843b6471341be85bd06a4f17625b9
Autor:
Gang Qiu, Hung-Yu Yang, Lunhui Hu, Huairuo Zhang, Chih-Yen Chen, Yanfeng Lyu, Christopher Eckberg, Peng Deng, Sergiy Krylyuk, Albert V. Davydov, Ruixing Zhang, Kang L. Wang
Publikováno v:
Nature Communications, Vol 14, Iss 1, Pp 1-9 (2023)
Abstract Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two host
Externí odkaz:
https://doaj.org/article/ca9b84813627401bb74c7022d44550f4
Defect detection in atomic-resolution images via unsupervised learning with translational invariance
Autor:
Yueming Guo, Sergei V. Kalinin, Hui Cai, Kai Xiao, Sergiy Krylyuk, Albert V. Davydov, Qianying Guo, Andrew R. Lupini
Publikováno v:
npj Computational Materials, Vol 7, Iss 1, Pp 1-9 (2021)
Abstract Crystallographic defects can now be routinely imaged at atomic resolution with aberration-corrected scanning transmission electron microscopy (STEM) at high speed, with the potential for vast volumes of data to be acquired in relatively shor
Externí odkaz:
https://doaj.org/article/4ad377f4cfce4a508ea0aa5446612074
Autor:
A. Gilad Kusne, Heshan Yu, Changming Wu, Huairuo Zhang, Jason Hattrick-Simpers, Brian DeCost, Suchismita Sarker, Corey Oses, Cormac Toher, Stefano Curtarolo, Albert V. Davydov, Ritesh Agarwal, Leonid A. Bendersky, Mo Li, Apurva Mehta, Ichiro Takeuchi
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
Machine learning driven research holds big promise towards accelerating materials’ discovery. Here the authors demonstrate CAMEO, which integrates active learning Bayesian optimization with practical experiments execution, for the discovery of new
Externí odkaz:
https://doaj.org/article/04164405f2b441b89a1dbae389eb4d1c
Autor:
Yeonhoo Kim, Roxanne Tutchton, Ren Liu, Sergiy Krylyuk, Jian-Xin Zhu, Albert V. Davydov, Young Joon Hong, Jinkyoung Yoo
Publikováno v:
APL Materials, Vol 9, Iss 9, Pp 091107-091107-7 (2021)
Two-dimensional (2D) materials as contacts for semiconductor devices have attracted much attention due to minimizing Fermi level pinning. Schottky–Mott physics has been widely employed to design 2D material-based electrodes and to elucidate their c
Externí odkaz:
https://doaj.org/article/375a0506156743558406538bba836df8
Autor:
Souvik Biswas, Aurélie Champagne, Jonah B. Haber, Supavit Pokawanvit, Joeson Wong, Hamidreza Akbari, Sergiy Krylyuk, Kenji Watanabe, Takashi Taniguchi, Albert V. Davydov, Zakaria Y. Al Balushi, Diana Y. Qiu, Felipe H. da Jornada, Jeffrey B. Neaton, Harry A. Atwater
Publikováno v:
ACS Nano. 17:7685-7694
Publikováno v:
IEEE Transactions on Electron Devices. 70:2067-2074
Autor:
Olasunbo Z. Farinre, Hawazin Alghamdi, Swapnil M. Mhatre, Mathew L. Kelley, Adam J. Biacchi, Albert V. Davydov, Christina A. Hacker, Albert F. Rigosi, Prabhakar Misra
Publikováno v:
Data, Vol 7, Iss 4, p 38 (2022)
Graphene nanoplatelets (GnPs) are promising candidates for gas sensing applications because they have a high surface area to volume ratio, high conductivity, and a high temperature stability. The information provided in this data article will cover t
Externí odkaz:
https://doaj.org/article/209c23f714e847bd8d899549dd45e51f
Autor:
Michael B. Katz, Chieh-I. Liu, Mattias Kruskopf, Heather M. Hill, Angela R. Hight Walker, Randolph E. Elmquist, Albert V. Davydov, Albert F. Rigosi
Publikováno v:
MRS Communications. 12:1168-1173