Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Albert P Bartók"'
Publikováno v:
Machine Learning: Science and Technology, Vol 4, Iss 1, p 015020 (2023)
We present a data-parallel software package for fitting Gaussian approximation potentials (GAPs) on multiple nodes using the ScaLAPACK library with MPI and OpenMP. Until now the maximum training set size for GAP models has been limited by the availab
Externí odkaz:
https://doaj.org/article/9646075d7fe245e88d9be4e46e2012a2
Autor:
Parth Vashishtha, Benjamin E. Griffith, Yanan Fang, Ankit Jaiswal, Gautam V. Nutan, Albert P. Bartók, Tim White, John V. Hanna
Publikováno v:
Journal of Materials Chemistry A. 10:3562-3578
This study presents series of direct band gap Pb-free double perovskite Cs2AgInxBi1−xCl6, Cs2NaxAg1−xInCl6:Bi and Cs2KxAg1−xInCl6:Bi nanocrystal systems [Cs2B′(I)B′′(III)Cl6] synthesised using a colloidal hot-injection route. The structur
Autor:
Sergey N. Pozdnyakov, Michael J. Willatt, Albert P. Bartók, Christoph Ortner, Gábor Csányi, Michele Ceriotti
The “quasi-constant” smooth overlap of atomic position and atom-centered symmetry function fingerprint manifolds recently discovered by Parsaeifard and Goedecker [J. Chem. Phys. 156, 034302 (2022)] are closely related to the degenerate pairs of c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bcfd4683bd671e32fd14b528c1989040
Autor:
Albert P. Bartók
Publikováno v:
Reference Module in Materials Science and Materials Engineering ISBN: 9780128035818
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a9911d7a2fc8e326ac2e53f963cabb7e
https://doi.org/10.1016/b978-0-323-90800-9.00162-1
https://doi.org/10.1016/b978-0-323-90800-9.00162-1
Autor:
David M. Wilkins, Noam Bernstein, Gábor Csányi, Albert P. Bartók, Volker L. Deringer, Michele Ceriotti
Publikováno v:
Deringer, V L, Bartók, A P, Bernstein, N, Wilkins, D M, Ceriotti, M & Csányi, G 2021, ' Gaussian Process Regression for Materials and Molecules ', Chemical Reviews, vol. 121, no. 16, pp. 10073-10141 . https://doi.org/10.1021/acs.chemrev.1c00022
Chemical Reviews
Chemical Reviews
We provide an introduction to Gaussian process regression (GPR) machine-learning methods in computational materials science and chemistry. The focus of the present review is on the regression of atomistic properties: in particular, on the constructio
Publikováno v:
ArXiv.org
We present a data-parallel software package for fitting Gaussian Approximation Potentials (GAPs) on multiple nodes using the ScaLAPACK library with MPI and OpenMP. Until now the maximum training set size for GAP models has been limited by the availab
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bf7845fd33322f2d58d970026fa043a1
http://arxiv.org/abs/2207.03803
http://arxiv.org/abs/2207.03803
Publikováno v:
Physical Review X, Vol 8, Iss 4, p 041048 (2018)
The success of first-principles electronic-structure calculation for predictive modeling in chemistry, solid-state physics, and materials science is constrained by the limitations on simulated length scales and timescales due to the computational cos
Externí odkaz:
https://doaj.org/article/ed4c68df5ee84d71a0992bf2aaea2dbe
Autor:
Albert P. Bartók, Michele Ceriotti, Félix Musil, Andrea Grisafi, Christoph Ortner, Gábor Csányi
The first step in the construction of a regression model or a data-driven analysis, aiming to predict or elucidate the relationship between the atomic-scale structure of matter and its properties, involves transforming the Cartesian coordinates of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::95dd682636ae7b43bdc2b37339691e2e
Autor:
Gábor Csányi, Patricia Hernández-León, Tapio Ala-Nissila, Miguel A. Caro, Albert P. Bartók, Xi Chen, Heikki Muhli
We present a comprehensive methodology to enable the addition of van der Waals (vdW) corrections to machine learning (ML) atomistic force fields. Using a Gaussian approximation potential (GAP) [Bartok et al., Phys. Rev. Lett. 104, 136403 (2010)10.110
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::43a385b317acd17ee3cc53f3665cd64c
Autor:
Sergey Pozdnyakov, Christoph Ortner, Albert P. Bartók, Michael J. Willatt, Michele Ceriotti, Gábor Csányi
Publikováno v:
Physical Review Letters. 125
Many-body descriptors are widely used to represent atomic environments in the construction of machine learned interatomic potentials and more broadly for fitting, classification and embedding tasks on atomic structures. It was generally believed that