Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Albert Matveev"'
Autor:
Albert Matveev, Ruslan Rakhimov, Alexey Artemov, Gleb Bobrovskikh, Vage Egiazarian, Emil Bogomolov, Daniele Panozzo, Denis Zorin, Evgeny Burnaev
Publikováno v:
ACM Transactions on Graphics. 41:1-22
We propose Deep Estimators of Features (DEFs), a learning-based framework for predicting sharp geometric features in sampled 3D shapes. Differently from existing data-driven methods, which reduce this problem to feature classification, we propose to
Publikováno v:
Artificial Neural Networks in Pattern Recognition ISBN: 9783030583088
ANNPR
ANNPR
Estimation of differential geometric quantities in discrete 3D data representations is one of the crucial steps in the geometry processing pipeline. Specifically, estimating normals and sharp feature lines from raw point clouds helps improve meshing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ff53e0180119b2103b72e8b8058be5c7
https://doi.org/10.1007/978-3-030-58309-5_9
https://doi.org/10.1007/978-3-030-58309-5_9
Autor:
Denis Zorin, Daniele Panozzo, Albert Matveev, Alexey Artemov, Sebastian Koch, Francis Williams, Evgeny Burnaev, Zhongshi Jiang, Marc Alexa
Publikováno v:
CVPR
We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground tru
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030373337
AIST
AIST
Reconstruction of directional fields is a need in many geometry processing tasks, such as image tracing, extraction of 3D geometric features, and finding principal surface directions. A common approach to the construction of directional fields from d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::81725f0b0652aec830e79c78e549812b
https://doi.org/10.1007/978-3-030-37334-4_33
https://doi.org/10.1007/978-3-030-37334-4_33