Zobrazeno 1 - 10
of 119
pro vyhledávání: '"Albalahi Abeer M."'
Publikováno v:
Open Mathematics, Vol 22, Iss 1, Pp 351-361 (2024)
The atom-bond sum-connectivity (ABS) index of a graph GG with edges e1,…,em{e}_{1},\ldots ,{e}_{m} is the sum of the numbers 1−2(dei+2)−1\sqrt{1-2{\left({d}_{{e}_{i}}+2)}^{-1}} over 1≤i≤m1\le i\le m, where dei{d}_{{e}_{i}} is the number of
Externí odkaz:
https://doaj.org/article/8e301fe6351a4cb1aec2702110928ff0
Autor:
Ali, Akbar, Gutman, Ivan, Redzepovic, Izudin, Mazorodze, Jaya Percival, Albalahi, Abeer M., Hamza, Amjad E.
The atom-bond-connectivity (ABC) index is one of the well-investigated degree-based topological indices. The atom-bond sum-connectivity (ABS) index is a modified version of the ABC index, which was introduced recently. The primary goal of the present
Externí odkaz:
http://arxiv.org/abs/2309.13689
Let $G$ be a graph. Denote by $d_x$, $E(G)$, and $D(G)$ the degree of a vertex $x$ in $G$, the set of edges of $G$, and the degree set of $G$, respectively. This paper proposes to investigate (both from mathematical and applications points of view) t
Externí odkaz:
http://arxiv.org/abs/2302.11099
Publikováno v:
Open Mathematics 22 (2024) #20230179
The atom-bond sum-connectivity (ABS) index of a graph $G$ with edges $e_1,\cdots,e_m$ is the sum of the numbers $\sqrt{1-2(d_{e_i}+2)^{-1}}$ over $1\le i \le m$, where $d_{e_i}$ is the number of edges adjacent with $e_i$. In this paper, we study the
Externí odkaz:
http://arxiv.org/abs/2302.01905
Autor:
Ali, Akbar1 (AUTHOR) aattiy@mans.edu.eg, Albalahi, Abeer M.1 (AUTHOR), Alanazi, Abdulaziz M.2 (AUTHOR), Bhatti, Akhlaq A.3 (AUTHOR), Alraqad, Tariq1 (AUTHOR), Saber, Hicham1 (AUTHOR), Attiya, Adel A.1 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Dec2024, Vol. 12 Issue 23, p3806. 14p.
Let $G$ be a graph with edge set $E(G)$. Denote by $d_w$ the degree of a vertex $w$ of $G$. The sigma index of $G$ is defined as $\sum_{uv\in E(G)}(d_u-d_v)^2$. A connected graph of order $n$ and size $n+k-1$ is known as a connected $k$-cyclic graph.
Externí odkaz:
http://arxiv.org/abs/2207.04101
Consider a graph $G$ and a real-valued function $f$ defined on the degree set of $G$. The sum of the outputs $f(d_v)$ over all vertices $v\in V(G)$ of $G$ is usually known as the vertex-degree-function indices and is denoted by $H_f(G)$, where $d_v$
Externí odkaz:
http://arxiv.org/abs/2207.00353
Autor:
Albalahi, Abeer M.1 (AUTHOR), Yousaf, Z.2 (AUTHOR) zeeshan.math@pu.edu.pk, Khan, S.2 (AUTHOR), Ali, Akbar1 (AUTHOR)
Publikováno v:
European Physical Journal C -- Particles & Fields. Sep2024, Vol. 84 Issue 9, p1-11. 11p.
Publikováno v:
In Heliyon 30 July 2024 10(14)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.