Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Alba, Nicolas Martinez"'
We study a differential geometric construction, the warped product, on the background geometry for information theory. Divergences, dual structures and symmetric 3-tensor are studied under this construction, and we show that warped product of manifol
Externí odkaz:
http://arxiv.org/abs/2410.19626
There is a well-known fact in Poisson geometry that reduction commutes with integration (of the associated integrable Lie algebroid). This is also valid for other types of geometries given by 2-dimensional closed forms. In this manuscript we extend t
Externí odkaz:
http://arxiv.org/abs/2403.03178
Publikováno v:
Reviews in Mathematical Physics Vol. 33 (2021)
We extend the AKSZ formulation of the Poisson sigma model to more general target spaces, and we develop the general theory of graded geometry for poly-symplectic and poly-Poisson structures. In particular we prove a Schwarz-type theorem and transgres
Externí odkaz:
http://arxiv.org/abs/1912.07697
In this paper we put together some tools from differential topology and analysis in order to study second order semi-linear partial differential equations on a Riemannian manifold $M$. We look for solutions that are constants along orbits of a given
Externí odkaz:
http://arxiv.org/abs/1802.08625
Autor:
Alba, Nicolás Martínez, Vargas, Andrés
We consider compatibility conditions between Poisson and Riemannian structures on smooth manifolds by means of a contravariant partially complex structure, or $f$-structure, introducing the notion of (almost) K\"ahler--Poisson manifolds. In addition,
Externí odkaz:
http://arxiv.org/abs/1709.02525
The main idea of this note is to describe the integration procedure for poly-Poisson structures, that is, to find a poly-symplectic groupoid integrating a poly-Poisson structure, in terms of topological field theories, namely via the path-space const
Externí odkaz:
http://arxiv.org/abs/1706.06014
Publikováno v:
Int. Math. Res. Not. IMRN 2019, no. 5, 1503-1542
We study higher-order analogues of Dirac structures, extending the multisymplectic structures that arise in field theory. We define higher Dirac structures as involutive subbundles of $TM+\wedge^k TM^*$ satisfying a weak version of the usual lagrangi
Externí odkaz:
http://arxiv.org/abs/1611.02292
Autor:
Alba, Nicolas Martinez
We introduce poly-symplectic groupoids, which are natural extensions of symplectic groupoids to the context of poly-symplectic geometry, and define poly-Poisson structures as their infinitesimal counterparts. We present equivalent descriptions of pol
Externí odkaz:
http://arxiv.org/abs/1409.0695
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.