Zobrazeno 1 - 10
of 171
pro vyhledávání: '"Alan D. Sokal"'
Publikováno v:
Linear Algebra and its Applications. 613:393-396
We correct an error in the proof of Theorem 3.2 in our paper arXiv:1612.02210 [math.AC] , published in Fallat et al. (2017) [1] .
Autor:
Alan D. Sokal, Jesús Salas
Publikováno v:
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
Digital.CSIC. Repositorio Institucional del CSIC
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
instname
Digital.CSIC. Repositorio Institucional del CSIC
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
72 pags. -- Mathematics Subject Classifications: 05A10 (Primary); 05A15, 05A19, 30B70 (Secondary)
We study the triangular array defined by the Graham–Knuth–Patashnik recurrence T (n, k) = (αn + βk + γ) T (n − 1, k) + (αn + βk + γ ) T
We study the triangular array defined by the Graham–Knuth–Patashnik recurrence T (n, k) = (αn + βk + γ) T (n − 1, k) + (αn + βk + γ ) T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::331264a04cb4a65c80470475075ce018
http://doi.org/10.37236/9766
http://doi.org/10.37236/9766
Autor:
Alan D. Sokal, Andrew Elvey Price
Publikováno v:
Electronic Journal of Combinatorics
We find a Thron-type continued fraction (T-fraction) for the ordinary generating function of the Ward polynomials, as well as for some generalizations employing a large (indeed infinite) family of independent indeterminates. Our proof is based on a b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f53b63bf7f8d68dc8ec46f8c2ca0488e
Autor:
Alan D. Sokal, Mathias Pétréolle
We introduce the generic Lah polynomials $L_{n,k}(\phi)$, which enumerate unordered forests of increasing ordered trees with a weight $\phi_i$ for each vertex with $i$ children. We show that, if the weight sequence $\phi$ is Toeplitz-totally positive
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::148f8fb0266428e63ade91a14ed6cc5b
Autor:
Alan D. Sokal
Publikováno v:
Discrete Mathematics. 343:111865
Two decades ago, Chauve, Dulucq and Guibert showed that the number of rooted trees on the vertex set $[n+1]$ in which exactly $k$ children of the root are lower-numbered than the root is $\binom{n}{k} \, n^{n-k}$. Here I give a simpler proof of this
Autor:
Alan D. Sokal
I study the sequences of Euler and Springer numbers from the point of view of the classical moment problem.
Comment: LaTeX2e, 30 pages. Version 2 contains some small clarifications suggested by a referee. Version 3 contains new footnotes 9 and 1
Comment: LaTeX2e, 30 pages. Version 2 contains some small clarifications suggested by a referee. Version 3 contains new footnotes 9 and 1
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b0d91c4554a629c16d3bdbca48ba9011
Publikováno v:
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, 97 (4), pp.040104. ⟨10.1103/PhysRevE.97.040104⟩
Phys.Rev.E
Phys.Rev.E, 2018, 97 (4), pp.040104. ⟨10.1103/PhysRevE.97.040104⟩
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
Digital.CSIC. Repositorio Institucional del CSIC
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2018, 97 (4), pp.040104. ⟨10.1103/PhysRevE.97.040104⟩
Phys.Rev.E
Phys.Rev.E, 2018, 97 (4), pp.040104. ⟨10.1103/PhysRevE.97.040104⟩
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
Digital.CSIC. Repositorio Institucional del CSIC
5 pags., 4 figs., 4 tabs.
We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former
We provide a criterion based on graph duality to predict whether the three-state Potts antiferromagnet on a plane quadrangulation has a zero- or finite-temperature critical point, and its universality class. The former
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fc499ffb1729f6cb0ee7f256834e8499
https://hal.archives-ouvertes.fr/hal-01792224
https://hal.archives-ouvertes.fr/hal-01792224
Autor:
Alan D. Sokal
We consider two different interpretations of the Chu--Vandermonde identity: as an identity for polynomials, and as an identity for infinite matrices. Each interpretation leads to a class of possible generalizations, and in both cases we obtain a comp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bfcf7efde10f1496b39563c423f6ecca
Publikováno v:
Communications in Mathematical Physics. 330:1339-1394
We prove the existence of long-range order at sufficiently low temperatures, including zero temperature, for the three-state Potts antiferromagnet on a class of quasi-transitive plane quadrangulations, including the diced lattice. More precisely, we