Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Akshaa Vatwani"'
Autor:
Shivajee Gupta, Akshaa Vatwani
Publikováno v:
Canadian Journal of Mathematics. :1-32
Autor:
Aditi Savalia, Akshaa Vatwani
Publikováno v:
Research in the Mathematical Sciences. 10
Autor:
Peng-Jie Wong, Akshaa Vatwani
Publikováno v:
Acta Arithmetica. 193:321-337
Publikováno v:
Journal of Mathematical Analysis and Applications. 515:126435
We give a number field analogue of a result of Ramanujan, Hardy and Littlewood, thereby obtaining a modular relation involving the non-trivial zeros of the Dedekind zeta function. We also provide a Riesz-type criterion for the Generalized Riemann Hyp
Autor:
Arindam Roy, Akshaa Vatwani
Publikováno v:
Advances in Mathematics. 346:467-509
We consider a certain class of multiplicative functions $f: \mathbb N \rightarrow \mathbb C$. Let $F(s)= \sum_{n=1}^\infty f(n)n^{-s}$ be the associated Dirichlet series and $F_N(s)= \sum_{n\le N} f(n)n^{-s}$ be the truncated Dirichlet series. In thi
We consider $L$-functions $L_1,\ldots,L_k$ from the Selberg class which have polynomial Euler product and satisfy Selberg's orthonormality condition. We show that on every vertical line $s=\sigma+it$ with $\sigma\in(1/2,1)$, these $L$-functions simul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4b16b13cb549e43aa647135ee79345a
Autor:
Akshaa Vatwani
Publikováno v:
Mathematische Zeitschrift. 293:285-317
Let $${{\mathcal {H}}}= \{h_1, \ldots , h_k\}$$ be a fixed set of k distinct non-negative integers. We show that Bombieri–Vinogradov type theorems for a certain class of functions f in arithmetic progressions can be extended to the product $$f(n) \
Autor:
Akshaa Vatwani, M. Murty
Publikováno v:
Proceedings of the American Mathematical Society. 146:3191-3202
Autor:
Akshaa Vatwani
Publikováno v:
Czechoslovak Mathematical Journal. 68:169-193
We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequenc
Autor:
Akshaa Vatwani, M. Ram Murty
Publikováno v:
Journal of Number Theory. 180:643-659
We formulate a conjecture regarding the equidistribution of the Mobius function over shifted primes in arithmetic progressions. Our main result is that such a conjecture for a fixed even integer h, in conjunction with the Elliott–Halberstam conject