Zobrazeno 1 - 10
of 203
pro vyhledávání: '"Akita Hirotaka"'
Autor:
Suzuki Tatsuya, MD, Akita Hirotaka, MD, PhD, Arita Yuki, MD, Tomiyama Akiko, MD, Hashimoto Masahiro, MD, PhD, Okuda Shigeo, MD, PhD, Mikami Shuji, MD, PhD, Mizuno Ryuichi, MD, PhD, Oya Mototsugu, MD, PhD, Jinzaki Masahiro, MD, PhD
Publikováno v:
Radiology Case Reports, Vol 16, Iss 4, Pp 858-862 (2021)
In the 2016 World Health Organization renal tumor classification, the mixed epithelial and stromal tumor family was introduced as a new entity. This family encompasses a spectrum of tumors, ranging from predominantly cystic tumors (adult cystic nephr
Externí odkaz:
https://doaj.org/article/132a20c1cf3945d2b98c26bf9bbbc45d
Autor:
Matsumoto, Kazuhiro, Akita, Hirotaka, Hashiguchi, Akinori, Takeda, Toshikazu, Kosaka, Takeo, Fukumoto, Keishiro, Yasumizu, Yota, Tanaka, Nobuyuki, Morita, Shinya, Mizuno, Ryuichi, Asanuma, Hiroshi, Oya, Mototsugu, Jinzaki, Masahiro
Publikováno v:
In Clinical Genitourinary Cancer June 2024 22(3)
Retrosynthesis is a problem to infer reactant compounds to synthesize a given product compound through chemical reactions. Recent studies on retrosynthesis focus on proposing more sophisticated prediction models, but the dataset to feed the models al
Externí odkaz:
http://arxiv.org/abs/2010.00792
Statistical generative models for molecular graphs attract attention from many researchers from the fields of bio- and chemo-informatics. Among these models, invertible flow-based approaches are not fully explored yet. In this paper, we propose a pow
Externí odkaz:
http://arxiv.org/abs/1909.13521
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Harada, Shonosuke, Akita, Hirotaka, Tsubaki, Masashi, Baba, Yukino, Takigawa, Ichigaku, Yamanishi, Yoshihiro, Kashima, Hisashi
Graphs are general and powerful data representations which can model complex real-world phenomena, ranging from chemical compounds to social networks; however, effective feature extraction from graphs is not a trivial task, and much work has been don
Externí odkaz:
http://arxiv.org/abs/1810.02080
Autor:
Akita, Hirotaka, Nakago, Kosuke, Komatsu, Tomoki, Sugawara, Yohei, Maeda, Shin-ichi, Baba, Yukino, Kashima, Hisashi
Recent advances in graph convolutional networks have significantly improved the performance of chemical predictions, raising a new research question: "how do we explain the predictions of graph convolutional networks?" A possible approach to answer t
Externí odkaz:
http://arxiv.org/abs/1807.01985
Autor:
Arita, Yuki, Akita, Hirotaka, Fujiwara, Hirokazu, Hashimoto, Masahiro, Shigeta, Keisuke, Kwee, Thomas C., Yoshida, Soichiro, Kosaka, Takeo, Okuda, Shigeo, Oya, Mototsugu, Jinzaki, Masahiro
Publikováno v:
In European Journal of Radiology Open 2022 9
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shigeta, Keisuke, Matsumoto, Kazuhiro, Abe, Takayuki, Komatsuda, Akari, Takeda, Toshikazu, Mizuno, Ryuichi, Kikuchi, Eiji, Asanuma, Hiroshi, Arita, Yuki, Akita, Hirotaka, Jinzaki, Masahiro, Miyajima, Akira, Oya, Mototsugu
Publikováno v:
In Asian Journal of Surgery June 2020 43(6):668-675