Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Akishev, Gabdolla"'
Autor:
Akishev, Gabdolla
The article considers the Lorentz space $L_{p,\tau}(\mathbb{T}^{m})$, $2\pi$ of periodic functions of many variables and $S_{p,\tau,\theta}^{0, \overline{b}}\mathbf{B}$, $S_{p, \tau, \theta}^{0, \overline{b}}B$ -- spaces of functions with mixed logar
Externí odkaz:
http://arxiv.org/abs/2308.08338
Autor:
Akishev, Gabdolla
In this paper we consider anisotropic Lorentz-Karamata space $2\pi$ of periodic functions of $m$ variables and Nikol'skii--Besov's class . In this paper, we establish order-sharp estimates of the best approximation by trigonometric polynomials with h
Externí odkaz:
http://arxiv.org/abs/2106.12761
Autor:
Akishev, Gabdolla
In this paper we consider $L_{\overline{p}, \overline\alpha, \overline{\tau}}^{*}(\mathbb{T}^{m})$ anisotropic Lorentz-Zyg\-mu\-nd space $ 2\pi$ of periodic functions of $m$ variables and Nikol'skii--Besov's class $S_{\overline{p}, \overline\alpha, \
Externí odkaz:
http://arxiv.org/abs/2106.07188
Autor:
Akishev, Gabdolla
In this paper we consider $ X(\bar\varphi)$ anisotropic symmetric space $ 2\pi$ of periodic functions of $m$ variables, in particular, the generalized Lorentz space $L_{\bar{\psi},\bar{\tau}}^{*}(\mathbb{T}^{m})$ and Nikol'skii--Besov's class $S_{X(\
Externí odkaz:
http://arxiv.org/abs/2105.14810
Autor:
Akishev, Gabdolla
Publikováno v:
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика, Vol 23, Iss 2, Pp 142-156 (2023)
The article considers the anisotropic Lorentz – Karamata space of periodic functions of several variables and the Nikol'skii – Besov class in this space. The order-sharp estimates are established for the best $M$-term trigonometric approximation
Externí odkaz:
https://doaj.org/article/6e9c86ab69f24405958e61501aaf9e01
Autor:
AKISHEV, GABDOLLA1 akishev_g@mail.ru, PERSSON, LARS ERIK2 larserik6.pers@gmail.com, SINGH, HARPAL3 harpal.singh@uit.no
Publikováno v:
Constructive Mathematical Analysis. Sep2021, Vol. 4 Issue 3, p291-304. 14p.
Publikováno v:
Nonlinear Studies. 2020, Vol. 27 Issue 4, p1137-1155. 19p.
Publikováno v:
Singh H, Persson LE, Akishev G. Some New Fourier and Jackson–Nikol’skii Type Inequalities inUnbounded Orthonormal Systems. Constructive Mathematical Analysis. 2021;4(3):291-304
Externí odkaz:
https://hdl.handle.net/10037/24325
Publikováno v:
Akishev, G; Lukkassen, D.; Persson, L.E.(2020) Some new Fourier inequalities for unbounded orthogonal systems in Lorentz-Zygmund Spaces. Jo
Externí odkaz:
https://hdl.handle.net/10037/18146
Publikováno v:
Akishev, G., Persson, L.E., Seger, A. (2019) Some Fourier inequalities for orthogonal systems in Lorentz–Zygmund spaces. Jo
Externí odkaz:
https://hdl.handle.net/10037/16161