Zobrazeno 1 - 10
of 520
pro vyhledávání: '"Akira Ishihama"'
Autor:
Akira Ishiguro, Akira Ishihama
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Abstract TDP-43 is a major pathological protein in sporadic and familial amyotrophic lateral sclerosis (ALS) and mediates mRNA fate. TDP-43 dysfunction leads to causes progressive degeneration of motor neurons, the details of which remain elusive. El
Externí odkaz:
https://doaj.org/article/72c6ffe281034076acf919020c6e8489
Autor:
Akira Ishiguro, Akira Ishihama
Publikováno v:
Frontiers in Molecular Biosciences, Vol 9 (2022)
A non-canonical DNA/RNA structure, G-quadruplex (G4), is a unique structure formed by two or more guanine quartets, which associate through Hoogsteen hydrogen bonding leading to form a square planar arrangement. A set of RNA-binding proteins specific
Externí odkaz:
https://doaj.org/article/d75c893b07c9428aa5963d89f9b301ef
Autor:
Mahima Sharma, Palika Abayakoon, Ruwan Epa, Yi Jin, James P. Lingford, Tomohiro Shimada, Masahiro Nakano, Janice W.-Y. Mui, Akira Ishihama, Ethan D. Goddard-Borger, Gideon J. Davies, Spencer J. Williams
Publikováno v:
ACS Central Science, Vol 7, Iss 3, Pp 476-487 (2021)
Externí odkaz:
https://doaj.org/article/2f2ce95f6e74441092b676f9ffdc734f
Publikováno v:
Frontiers in Microbiology, Vol 12 (2021)
The identification of regulatory targets of all transcription factors (TFs) is critical for understanding the entire network of genome regulation. A total of approximately 300 TFs exist in the model prokaryote Escherichia coli K-12, but the identific
Externí odkaz:
https://doaj.org/article/1e51e31cd3f64448b304a2650f0aa8ba
Publikováno v:
Frontiers in Genetics, Vol 10 (2019)
Transcription and translation in growing phase of Escherichia coli, the best-studied model prokaryote, are coupled and regulated in coordinate fashion. Accordingly, the growth rate-dependent control of the synthesis of RNA polymerase (RNAP) core enzy
Externí odkaz:
https://doaj.org/article/199b630f07fa465eaa57cdd79c7539cd
Publikováno v:
mSystems, Vol 3, Iss 5 (2018)
ABSTRACT In the process of Escherichia coli K-12 growth from exponential phase to stationary, marked alteration takes place in the pattern of overall genome expression through modulation of both parts of the transcriptional and translational apparatu
Externí odkaz:
https://doaj.org/article/66c987fae5084c42a0d86d1af1ef194b
Autor:
Kaneyoshi Yamamoto, Yuki Yamanaka, Tomohiro Shimada, Paramita Sarkar, Myu Yoshida, Neerupma Bhardwaj, Hiroki Watanabe, Yuki Taira, Dipankar Chatterji, Akira Ishihama
Publikováno v:
mSystems, Vol 3, Iss 1 (2018)
ABSTRACT The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ′ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rp
Externí odkaz:
https://doaj.org/article/5acfc63aa776487285b23a96a0961513
Publikováno v:
PLoS ONE, Vol 12, Iss 6, p e0179181 (2017)
The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by the sigma subunit. The model prokaryote Escherichia coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. For identific
Externí odkaz:
https://doaj.org/article/2ced6f4db2544caf9c06a4b23d7d62c0
Autor:
Taketo Yoshida, Akihiko Sakamoto, Yusuke Terui, Koichi Takao, Yoshiaki Sugita, Kaneyoshi Yamamoto, Akira Ishihama, Kazuei Igarashi, Keiko Kashiwagi
Publikováno v:
PLoS ONE, Vol 11, Iss 7, p e0159494 (2016)
The effects of spermidine analogues [norspermidine (NSPD, 33), spermidine (SPD, 34), homospermidine (HSPD, 44) and aminopropylcadaverine (APCAD, 35)] on cell growth were studied using Escherichia coli polyamine-requiring mutant MA261. Cell growth was
Externí odkaz:
https://doaj.org/article/04ee335cc2564a9782872c228c0cd866
Autor:
Hiraku Takada, Tomohiro Shimada, Debashish Dey, M Zuhaib Quyyum, Masahiro Nakano, Akira Ishiguro, Hideji Yoshida, Kaneyoshi Yamamoto, Ranjan Sen, Akira Ishihama
Publikováno v:
PLoS ONE, Vol 11, Iss 12, p e0163057 (2016)
Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region
Externí odkaz:
https://doaj.org/article/1cde67dcd8724f979d1a24be190bb9a1