Zobrazeno 1 - 10
of 19 300
pro vyhledávání: '"Ajayi AS"'
The complexity of exploratory data analysis poses significant challenges for collaboration and effective communication of analytic workflows. Automated methods can alleviate these challenges by summarizing workflows into more interpretable segments,
Externí odkaz:
http://arxiv.org/abs/2410.11011
Term normalization is the process of mapping a term from free text to a standardized concept and its machine-readable code in an ontology. Accurate normalization of terms that capture phenotypic differences between patients and diseases is critical t
Externí odkaz:
http://arxiv.org/abs/2409.13746
Large language models (LLMs) have shown improved accuracy in phenotype term normalization tasks when augmented with retrievers that suggest candidate normalizations based on term definitions. In this work, we introduce a simplified retriever that enh
Externí odkaz:
http://arxiv.org/abs/2409.13744
Autor:
Hier, Daniel B., Munzir, S. Ilyas, Stahlfeld, Anne, Obafemi-Ajayi, Tayo, Carrithers, Michael D.
High-throughput phenotyping automates the mapping of patient signs to standardized ontology concepts and is essential for precision medicine. This study evaluates the automation of phenotyping of clinical summaries from the Online Mendelian Inheritan
Externí odkaz:
http://arxiv.org/abs/2408.01214
Autor:
Dubey, Abhimanyu, Jauhri, Abhinav, Pandey, Abhinav, Kadian, Abhishek, Al-Dahle, Ahmad, Letman, Aiesha, Mathur, Akhil, Schelten, Alan, Yang, Amy, Fan, Angela, Goyal, Anirudh, Hartshorn, Anthony, Yang, Aobo, Mitra, Archi, Sravankumar, Archie, Korenev, Artem, Hinsvark, Arthur, Rao, Arun, Zhang, Aston, Rodriguez, Aurelien, Gregerson, Austen, Spataru, Ava, Roziere, Baptiste, Biron, Bethany, Tang, Binh, Chern, Bobbie, Caucheteux, Charlotte, Nayak, Chaya, Bi, Chloe, Marra, Chris, McConnell, Chris, Keller, Christian, Touret, Christophe, Wu, Chunyang, Wong, Corinne, Ferrer, Cristian Canton, Nikolaidis, Cyrus, Allonsius, Damien, Song, Daniel, Pintz, Danielle, Livshits, Danny, Esiobu, David, Choudhary, Dhruv, Mahajan, Dhruv, Garcia-Olano, Diego, Perino, Diego, Hupkes, Dieuwke, Lakomkin, Egor, AlBadawy, Ehab, Lobanova, Elina, Dinan, Emily, Smith, Eric Michael, Radenovic, Filip, Zhang, Frank, Synnaeve, Gabriel, Lee, Gabrielle, Anderson, Georgia Lewis, Nail, Graeme, Mialon, Gregoire, Pang, Guan, Cucurell, Guillem, Nguyen, Hailey, Korevaar, Hannah, Xu, Hu, Touvron, Hugo, Zarov, Iliyan, Ibarra, Imanol Arrieta, Kloumann, Isabel, Misra, Ishan, Evtimov, Ivan, Copet, Jade, Lee, Jaewon, Geffert, Jan, Vranes, Jana, Park, Jason, Mahadeokar, Jay, Shah, Jeet, van der Linde, Jelmer, Billock, Jennifer, Hong, Jenny, Lee, Jenya, Fu, Jeremy, Chi, Jianfeng, Huang, Jianyu, Liu, Jiawen, Wang, Jie, Yu, Jiecao, Bitton, Joanna, Spisak, Joe, Park, Jongsoo, Rocca, Joseph, Johnstun, Joshua, Saxe, Joshua, Jia, Junteng, Alwala, Kalyan Vasuden, Upasani, Kartikeya, Plawiak, Kate, Li, Ke, Heafield, Kenneth, Stone, Kevin, El-Arini, Khalid, Iyer, Krithika, Malik, Kshitiz, Chiu, Kuenley, Bhalla, Kunal, Rantala-Yeary, Lauren, van der Maaten, Laurens, Chen, Lawrence, Tan, Liang, Jenkins, Liz, Martin, Louis, Madaan, Lovish, Malo, Lubo, Blecher, Lukas, Landzaat, Lukas, de Oliveira, Luke, Muzzi, Madeline, Pasupuleti, Mahesh, Singh, Mannat, Paluri, Manohar, Kardas, Marcin, Oldham, Mathew, Rita, Mathieu, Pavlova, Maya, Kambadur, Melanie, Lewis, Mike, Si, Min, Singh, Mitesh Kumar, Hassan, Mona, Goyal, Naman, Torabi, Narjes, Bashlykov, Nikolay, Bogoychev, Nikolay, Chatterji, Niladri, Duchenne, Olivier, Çelebi, Onur, Alrassy, Patrick, Zhang, Pengchuan, Li, Pengwei, Vasic, Petar, Weng, Peter, Bhargava, Prajjwal, Dubal, Pratik, Krishnan, Praveen, Koura, Punit Singh, Xu, Puxin, He, Qing, Dong, Qingxiao, Srinivasan, Ragavan, Ganapathy, Raj, Calderer, Ramon, Cabral, Ricardo Silveira, Stojnic, Robert, Raileanu, Roberta, Girdhar, Rohit, Patel, Rohit, Sauvestre, Romain, Polidoro, Ronnie, Sumbaly, Roshan, Taylor, Ross, Silva, Ruan, Hou, Rui, Wang, Rui, Hosseini, Saghar, Chennabasappa, Sahana, Singh, Sanjay, Bell, Sean, Kim, Seohyun Sonia, Edunov, Sergey, Nie, Shaoliang, Narang, Sharan, Raparthy, Sharath, Shen, Sheng, Wan, Shengye, Bhosale, Shruti, Zhang, Shun, Vandenhende, Simon, Batra, Soumya, Whitman, Spencer, Sootla, Sten, Collot, Stephane, Gururangan, Suchin, Borodinsky, Sydney, Herman, Tamar, Fowler, Tara, Sheasha, Tarek, Georgiou, Thomas, Scialom, Thomas, Speckbacher, Tobias, Mihaylov, Todor, Xiao, Tong, Karn, Ujjwal, Goswami, Vedanuj, Gupta, Vibhor, Ramanathan, Vignesh, Kerkez, Viktor, Gonguet, Vincent, Do, Virginie, Vogeti, Vish, Petrovic, Vladan, Chu, Weiwei, Xiong, Wenhan, Fu, Wenyin, Meers, Whitney, Martinet, Xavier, Wang, Xiaodong, Tan, Xiaoqing Ellen, Xie, Xinfeng, Jia, Xuchao, Wang, Xuewei, Goldschlag, Yaelle, Gaur, Yashesh, Babaei, Yasmine, Wen, Yi, Song, Yiwen, Zhang, Yuchen, Li, Yue, Mao, Yuning, Coudert, Zacharie Delpierre, Yan, Zheng, Chen, Zhengxing, Papakipos, Zoe, Singh, Aaditya, Grattafiori, Aaron, Jain, Abha, Kelsey, Adam, Shajnfeld, Adam, Gangidi, Adithya, Victoria, Adolfo, Goldstand, Ahuva, Menon, Ajay, Sharma, Ajay, Boesenberg, Alex, Vaughan, Alex, Baevski, Alexei, Feinstein, Allie, Kallet, Amanda, Sangani, Amit, Yunus, Anam, Lupu, Andrei, Alvarado, Andres, Caples, Andrew, Gu, Andrew, Ho, Andrew, Poulton, Andrew, Ryan, Andrew, Ramchandani, Ankit, Franco, Annie, Saraf, Aparajita, Chowdhury, Arkabandhu, Gabriel, Ashley, Bharambe, Ashwin, Eisenman, Assaf, Yazdan, Azadeh, James, Beau, Maurer, Ben, Leonhardi, Benjamin, Huang, Bernie, Loyd, Beth, De Paola, Beto, Paranjape, Bhargavi, Liu, Bing, Wu, Bo, Ni, Boyu, Hancock, Braden, Wasti, Bram, Spence, Brandon, Stojkovic, Brani, Gamido, Brian, Montalvo, Britt, Parker, Carl, Burton, Carly, Mejia, Catalina, Wang, Changhan, Kim, Changkyu, Zhou, Chao, Hu, Chester, Chu, Ching-Hsiang, Cai, Chris, Tindal, Chris, Feichtenhofer, Christoph, Civin, Damon, Beaty, Dana, Kreymer, Daniel, Li, Daniel, Wyatt, Danny, Adkins, David, Xu, David, Testuggine, Davide, David, Delia, Parikh, Devi, Liskovich, Diana, Foss, Didem, Wang, Dingkang, Le, Duc, Holland, Dustin, Dowling, Edward, Jamil, Eissa, Montgomery, Elaine, Presani, Eleonora, Hahn, Emily, Wood, Emily, Brinkman, Erik, Arcaute, Esteban, Dunbar, Evan, Smothers, Evan, Sun, Fei, Kreuk, Felix, Tian, Feng, Ozgenel, Firat, Caggioni, Francesco, Guzmán, Francisco, Kanayet, Frank, Seide, Frank, Florez, Gabriela Medina, Schwarz, Gabriella, Badeer, Gada, Swee, Georgia, Halpern, Gil, Thattai, Govind, Herman, Grant, Sizov, Grigory, Guangyi, Zhang, Lakshminarayanan, Guna, Shojanazeri, Hamid, Zou, Han, Wang, Hannah, Zha, Hanwen, Habeeb, Haroun, Rudolph, Harrison, Suk, Helen, Aspegren, Henry, Goldman, Hunter, Damlaj, Ibrahim, Molybog, Igor, Tufanov, Igor, Veliche, Irina-Elena, Gat, Itai, Weissman, Jake, Geboski, James, Kohli, James, Asher, Japhet, Gaya, Jean-Baptiste, Marcus, Jeff, Tang, Jeff, Chan, Jennifer, Zhen, Jenny, Reizenstein, Jeremy, Teboul, Jeremy, Zhong, Jessica, Jin, Jian, Yang, Jingyi, Cummings, Joe, Carvill, Jon, Shepard, Jon, McPhie, Jonathan, Torres, Jonathan, Ginsburg, Josh, Wang, Junjie, Wu, Kai, U, Kam Hou, Saxena, Karan, Prasad, Karthik, Khandelwal, Kartikay, Zand, Katayoun, Matosich, Kathy, Veeraraghavan, Kaushik, Michelena, Kelly, Li, Keqian, Huang, Kun, Chawla, Kunal, Lakhotia, Kushal, Huang, Kyle, Chen, Lailin, Garg, Lakshya, A, Lavender, Silva, Leandro, Bell, Lee, Zhang, Lei, Guo, Liangpeng, Yu, Licheng, Moshkovich, Liron, Wehrstedt, Luca, Khabsa, Madian, Avalani, Manav, Bhatt, Manish, Tsimpoukelli, Maria, Mankus, Martynas, Hasson, Matan, Lennie, Matthew, Reso, Matthias, Groshev, Maxim, Naumov, Maxim, Lathi, Maya, Keneally, Meghan, Seltzer, Michael L., Valko, Michal, Restrepo, Michelle, Patel, Mihir, Vyatskov, Mik, Samvelyan, Mikayel, Clark, Mike, Macey, Mike, Wang, Mike, Hermoso, Miquel Jubert, Metanat, Mo, Rastegari, Mohammad, Bansal, Munish, Santhanam, Nandhini, Parks, Natascha, White, Natasha, Bawa, Navyata, Singhal, Nayan, Egebo, Nick, Usunier, Nicolas, Laptev, Nikolay Pavlovich, Dong, Ning, Zhang, Ning, Cheng, Norman, Chernoguz, Oleg, Hart, Olivia, Salpekar, Omkar, Kalinli, Ozlem, Kent, Parkin, Parekh, Parth, Saab, Paul, Balaji, Pavan, Rittner, Pedro, Bontrager, Philip, Roux, Pierre, Dollar, Piotr, Zvyagina, Polina, Ratanchandani, Prashant, Yuvraj, Pritish, Liang, Qian, Alao, Rachad, Rodriguez, Rachel, Ayub, Rafi, Murthy, Raghotham, Nayani, Raghu, Mitra, Rahul, Li, Raymond, Hogan, Rebekkah, Battey, Robin, Wang, Rocky, Maheswari, Rohan, Howes, Russ, Rinott, Ruty, Bondu, Sai Jayesh, Datta, Samyak, Chugh, Sara, Hunt, Sara, Dhillon, Sargun, Sidorov, Sasha, Pan, Satadru, Verma, Saurabh, Yamamoto, Seiji, Ramaswamy, Sharadh, Lindsay, Shaun, Feng, Sheng, Lin, Shenghao, Zha, Shengxin Cindy, Shankar, Shiva, Zhang, Shuqiang, Wang, Sinong, Agarwal, Sneha, Sajuyigbe, Soji, Chintala, Soumith, Max, Stephanie, Chen, Stephen, Kehoe, Steve, Satterfield, Steve, Govindaprasad, Sudarshan, Gupta, Sumit, Cho, Sungmin, Virk, Sunny, Subramanian, Suraj, Choudhury, Sy, Goldman, Sydney, Remez, Tal, Glaser, Tamar, Best, Tamara, Kohler, Thilo, Robinson, Thomas, Li, Tianhe, Zhang, Tianjun, Matthews, Tim, Chou, Timothy, Shaked, Tzook, Vontimitta, Varun, Ajayi, Victoria, Montanez, Victoria, Mohan, Vijai, Kumar, Vinay Satish, Mangla, Vishal, Albiero, Vítor, Ionescu, Vlad, Poenaru, Vlad, Mihailescu, Vlad Tiberiu, Ivanov, Vladimir, Li, Wei, Wang, Wenchen, Jiang, Wenwen, Bouaziz, Wes, Constable, Will, Tang, Xiaocheng, Wang, Xiaofang, Wu, Xiaojian, Wang, Xiaolan, Xia, Xide, Wu, Xilun, Gao, Xinbo, Chen, Yanjun, Hu, Ye, Jia, Ye, Qi, Ye, Li, Yenda, Zhang, Yilin, Zhang, Ying, Adi, Yossi, Nam, Youngjin, Yu, Wang, Hao, Yuchen, Qian, Yundi, He, Yuzi, Rait, Zach, DeVito, Zachary, Rosnbrick, Zef, Wen, Zhaoduo, Yang, Zhenyu, Zhao, Zhiwei
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage
Externí odkaz:
http://arxiv.org/abs/2407.21783
Autor:
Kuchera, A. N., Hoffman, C. R., Ryan, G., D'Amato, I. B., Guarinello, O. M., Kielb, P. S., Aggarwal, R., Ajayi, S., Conley, A. L., Conroy, I., Cottle, P. D., Esparza, J. C., Genty, S., Hanselman, K., Heinze, M., Houlihan, D., Kelly, B., Khawaja, M. I., Lopez-Saavedra, E., McCann, G. W., Morelock, A. B., Riley, L. A., Sandrik, A., Sitaraman, V., Spieker, M., Temanson, E., Wibisono, C., Wiedenhover, I.
Purpose: Single-neutron adding data was collected in order to determine the distribution of the single-neutron strength of the $0f_{7/2}$, $1p_{3/2}$, $1p_{1/2}$ and $0f_{5/2}$ orbitals outside of $Z=16, N=18$, $^{34}$S. Methods: The $^{34}$S($d$,$p$
Externí odkaz:
http://arxiv.org/abs/2407.06030
Autor:
Gray, T. J., Allmond, J. M., Benetti, C., Wibisono, C., Baby, L., Gargano, A., Miyagi, T., Macchiavelli, A. O., Stuchbery, A. E., Wood, J. L., Ajayi, S., Aragon, J., Asher, B. W., Barber, P., Bhattacharya, S., Boisseau, R., Christie, J. M., Conley, A. L., De Rosa, P., Dowling, D. T., Esparza, C., Gibbons, J., Hanselman, K., Holt, J. D., Lopez-Caceres, S., Saavedra, E. Lopez, McCann, G. W., Morelock, A., Kelly, B., King, T. T., Rasco, B. C., Sitaraman, V., Tabor, S. L., Temanson, E., Tripathi, V., Wiedenhöver, I., Yadav, R. B.
Single-step Coulomb excitation of $^{46,48,49,50}$Ti is presented. A complete set of $E2$ matrix elements for the quintuplet of states in $^{49}$Ti, centered on the $2^+$ core excitation, was measured for the first time. A total of nine $E2$ matrix e
Externí odkaz:
http://arxiv.org/abs/2407.03503
Quantifying uncertainties for machine learning models is a critical step to reduce human verification effort by detecting predictions with low confidence. This paper proposes a method for uncertainty quantification (UQ) of table structure recognition
Externí odkaz:
http://arxiv.org/abs/2407.01731
Autor:
Ajayi, Oluwaseun T., Cheng, Yu
With the prevailing efforts to combat the coronavirus disease 2019 (COVID-19) pandemic, there are still uncertainties that are yet to be discovered about its spread, future impact, and resurgence. In this paper, we present a three-stage data-driven a
Externí odkaz:
http://arxiv.org/abs/2406.10807
Autor:
Hier, Daniel B., Obafemi-Ajayi, Tayo, Olbricht, Gayla R., Burns, Devin M., Petrenko, Sasha, Wunsch II, Donald C.
Dimension reduction is increasingly applied to high-dimensional biomedical data to improve its interpretability. When datasets are reduced to two dimensions, each observation is assigned an x and y coordinates and is represented as a point on a scatt
Externí odkaz:
http://arxiv.org/abs/2403.20246