Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Ajay K. Mandava"'
Publikováno v:
Earth Science Informatics. 14:1685-1705
Hyperspectral imaging has been rapidly developing over the past decade, and modern sensor technologies can cover large areas with exceptional spatial, spectral, and temporal resolutions. Due to these features, hyperspectral imaging is used effectivel
Autor:
Ajay K. Mandava, Emma E. Regentova
Publikováno v:
Procedia Computer Science. 46:1268-1273
The megavoltage X-ray technology is utilized for detecting nuclear materials in cargo containers. An interlaced response is obtained by switching between 6MeV and 9 MeV beams. By measuring the penetration levels of cargo contents, the major materials
Publikováno v:
Applied Mathematics & Information Sciences. 8:1-12
LFAD is a novel locally- and feature-adaptive diffusion based method for removing additive white Gaussian (AWG) noise in images. The method approaches each image region individually and uses a different number of diffusion iterations per region to at
Autor:
Emma E. Regentova, Ajay K. Mandava
Publikováno v:
Procedia Engineering. 30:1138-1145
In this paper, we introduce a nonlinear diffusion method for image denoising using robust M-estimators. In the proposed diffusion model, the diffusivity function is replaced by robust M-estimators weight function and the modulus of gradient in a diff
Autor:
Ajay K. Mandava, Gongyin Chen, Vijay K. Mandava, Zane J. Wilson, Emma E. Regentova, Lei Zhang, Kranthi K. Potetti
Publikováno v:
Nuclear Technology. 175:276-285
Publikováno v:
ICDIP
Advances in X-ray microtomography (XMT) are opening new opportunities for examining soil structural properties and fluid distribution around living roots in-situ. The low contrast between moist soil, root and air-filled pores in XMT images presents a
Autor:
George Bebis, Ajay K. Mandava, Emma E. Regentova, Venkatesan Muthukumar, Ali Pour Yazdanpanah
Publikováno v:
ITNG
In this paper we introduce a parallel implementation of locally-and feature-adaptive diffusion based (LFAD) method for image denoising using NVIDIA CUDA framework and graphics processing units (GPUs). LFAD is a novel method for removing additive whit
Publikováno v:
Advances in Visual Computing ISBN: 9783642419386
ISVC (2)
ISVC (2)
Sky segmentation is an important task for many applications related to obstacle detection and path planning for autonomous air and ground vehicles. In this paper, we present a method for the automated sky segmentation by fusing K-means clustering and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::41bd231306d51f4faae4b2cf6db8b329
https://doi.org/10.1007/978-3-642-41939-3_65
https://doi.org/10.1007/978-3-642-41939-3_65
Autor:
Ajay K. Mandava, Emma E. Regentova
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783642215926
ICIAR (1)
ICIAR (1)
Traditional diffusivity based denoising models detect edges by the gradients of intensities, and thus are easily affected by noise. In this paper, we develop a nonlinear diffusion denoising method which adapts to the local context and thus preserves
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fb73a39edb4b2ee232783330463b6098
https://doi.org/10.1007/978-3-642-21593-3_7
https://doi.org/10.1007/978-3-642-21593-3_7
Publikováno v:
Advances in Computing and Communications ISBN: 9783642227080
ACC (1)
ACC (1)
Microarrays have become the tool of choice for the global analysis of gene expression. Powerful data acquisition systems are now available to produce massive amounts of genetic data. However, the resultant data consists of thousands of points that ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fffafc9156aa7c68398df22e6f89bb27
https://doi.org/10.1007/978-3-642-22709-7_36
https://doi.org/10.1007/978-3-642-22709-7_36