Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Aizenberg, Lev A"'
Autor:
Aizenberg, Lev
We present an elementary, short and simple proof of the validity of the Lindel\"of hypothesis about the Riemann zeta-function. The obtained estimate and classical results by Bohr-Landau and Littlewood disprove Riemann's hypothesis.
Comment: The
Comment: The
Externí odkaz:
http://arxiv.org/abs/0801.0114
Autor:
Aizenberg, Lev, Vidras, Alekos
In the present article we give geometric generalizations of the estimates from Chapters 5,6,7 from \cite{krem:gnus}, while extending their sharpness to new cases.
Comment: 9 pages
Comment: 9 pages
Externí odkaz:
http://arxiv.org/abs/0706.3816
We prove that the abscissas of Bohr and Rogosinski for ordinary Dirichlet series, mapping the right half-plane into the bounded convex domain $G\subset \mathbb{C} $ are independent of the domain $G$. Furthermore, we obtain new estimates about these a
Externí odkaz:
http://arxiv.org/abs/0706.3582
Autor:
Aizenberg, Lev
The Bohr radius for power series of holomorphic functions mapping a multidimensional Reinhardt domain into the convex domain in the complex plane is independent of this convex domain.
Externí odkaz:
http://arxiv.org/abs/math/0612769
Autor:
Aizenberg, Lev
Generalizing the classical result of Bohr, we show that if an n-variable power series converges in an n-circular bounded complete domain D and its sum has modulus less than 1, then the sum of the maximum of the moduli of the terms is less than 1 in t
Externí odkaz:
http://arxiv.org/abs/math/9804102
Autor:
Aizenberg, Lev
Publikováno v:
Proceedings of the American Mathematical Society, 2000 Apr 01. 128(4), 1147-1155.
Externí odkaz:
https://www.jstor.org/stable/119791
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 June 2001 258(2):429-447
Autor:
Aizenberg, Lev1, Shoikhet, David2
Publikováno v:
Complex Variables. Feb2002, Vol. 47 Issue 2, p109. 13p.
Autor:
Aizenberg, Lev, Tarkhanov, Nikolai
Using the multidimensional logarithmic residue we show a simple formula for the difference between the number of integer points in a bounded domain of Rn and the volume of this domain. The difference proves to be the integral of an explicit different
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::9f00ef6fad0a198a37f61da167b9b802
https://openrepository.ru/article?id=765297
https://openrepository.ru/article?id=765297