Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Aissa, Akram Ben"'
Autor:
Ahmedi, Wafa, Aissa, Akram Ben
In this paper, we embark on a captivating exploration of the stabilization of locally transmitted problems within the realm of two interconnected wave systems. To begin, we wield the formidable Arendt-Batty criteria\cite{AW} to affirm the resolute st
Externí odkaz:
http://arxiv.org/abs/2310.08290
Autor:
Zouhair, Walid, Aissa, Akram Ben
In this paper, we establish some important results for the impulsive wave equation. We begin by proving the existence of a solution. Then, we study the impulse approximate controllability where the control function acts on a subdomain $\omega$ and at
Externí odkaz:
http://arxiv.org/abs/2106.02868
Autor:
Aissa, Akram Ben
This paper concerns the well-posedness and uniform stabilization of the Petrovsky-Wave Nonlinear coupled system with strong damping. Existence of global weak solutions for this problem is established by using the Galerkin method. Meanwhile, under a c
Externí odkaz:
http://arxiv.org/abs/2012.07109
Autor:
Aissa, Akram Ben
In the paper under study, we consider the following coupled non-degenerate Kirchhoff system \begin{equation}\label{P} \left \{ \begin{aligned} &\displaystyle y_{tt}-\upvarphi\Big(\int_\Omega | \nabla y |^2\,dx\Big)\Delta y +\upalpha \Delta \uptheta=0
Externí odkaz:
http://arxiv.org/abs/2012.02784
In this paper we consider a nonlinear Petrovsky equation in a bounded domain with a delay term and a strong dissipation \begin{align*} u_{tt} + \Delta^{2} u -\mu_1g_1( \Delta( u_t(x,t))) -\mu_2g_2( \Delta (u_t(x,t-\tau))) =0. \end{align*} We prove th
Externí odkaz:
http://arxiv.org/abs/2011.06503
In this paper, we consider an Euler-Bernoulli beam equation with time-varying internal fluid. We assume that the fluid is moving with non-constant velocity and dynamical boundary conditions are satisfied. We prove the existence and uniqueness of glob
Externí odkaz:
http://arxiv.org/abs/2005.05216
In this paper, we consider the following viscoelastic coupled wave equation with a delay term: $$ \begin{gathered} u_{tt}(x,t)-Lu(x,t)-\int_0^t g_1(t-\sigma)L u(x,\sigma)d\sigma + \mu_{1}u_{t}(x,t) + \int_{\tau_1}^{\tau_2} \mu_2(s)u_{t}(x,t-s)ds + f_
Externí odkaz:
http://arxiv.org/abs/1802.01303
In this paper, we are concerned with the study of stabilization problem for the following strongly degenerate wave equation in one space dimension $$w_{tt}(x,t)-\left(x^\alpha w_x(x,t)\right)_x=0$$ where ${\bf\alpha\in [1,2)}$. Thus, using a frequenc
Externí odkaz:
http://arxiv.org/abs/1801.04746
Autor:
Aissa, Akram Ben, Ferhat, Mohamed
In this paper we consider wave viscoelastic equation with dynamic boundary condition in a bounded domain, we establish a general decay result of energy by exploiting the frequency domain method which consists in combining a contradiction argument and
Externí odkaz:
http://arxiv.org/abs/1801.02988
Autor:
Ahmedi, Wafa1 (AUTHOR), Aissa, Akram Ben2 (AUTHOR) akram.benaissa@fsm.rnu.tn
Publikováno v:
Asymptotic Analysis. Sep2024, p1-31. 31p.