Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Ahmed E. Fetit"'
Autor:
Vyacheslav R. Karolis, Sean P. Fitzgibbon, Lucilio Cordero-Grande, Seyedeh-Rezvan Farahibozorg, Anthony N. Price, Emer J. Hughes, Ahmed E. Fetit, Vanessa Kyriakopoulou, Maximilian Pietsch, Mary A. Rutherford, Daniel Rueckert, Joseph V. Hajnal, A. David Edwards, Jonathan O’Muircheartaigh, Eugene P. Duff, Tomoki Arichi
Publikováno v:
Communications Biology, Vol 6, Iss 1, Pp 1-15 (2023)
Abstract A key feature of the fetal period is the rapid emergence of organised patterns of spontaneous brain activity. However, characterising this process in utero using functional MRI is inherently challenging and requires analytical methods which
Externí odkaz:
https://doaj.org/article/8b26d1710c684b05ae543b938ee12639
Autor:
Yaniel Cabrera, Ahmed E. Fetit
Publikováno v:
IEEE Access, Vol 10, Pp 58431-58446 (2022)
Convolutional neural networks (CNNs) have become the de facto algorithms of choice for semantic segmentation tasks in biomedical image processing. Yet, models based on CNNs remain susceptible to the domain shift problem, where a mismatch between sour
Externí odkaz:
https://doaj.org/article/b3a69ca29174488083294b9cd874ff53
Autor:
Leonie Richter, Ahmed E. Fetit
Publikováno v:
Frontiers in Neuroinformatics, Vol 16 (2022)
An important step toward delivering an accurate connectome of the human brain is robust segmentation of 3D Magnetic Resonance Imaging (MRI) scans, which is particularly challenging when carried out on perinatal data. In this paper, we present an auto
Externí odkaz:
https://doaj.org/article/809c6660b8814669b11101aaeb744fe8
Autor:
Yiming Xie, Ahmed E. Fetit
Publikováno v:
Medical Image Understanding and Analysis ISBN: 9783031120527
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4183e11bb501d898ef0f9cbc7705b0fe
https://doi.org/10.1007/978-3-031-12053-4_33
https://doi.org/10.1007/978-3-031-12053-4_33
Autor:
Lucia Ballerini, Ruggiero Lovreglio, Sarah McGrory, Stephan Wunderlich, Joanna M. Wardlaw, Emanuele Trucco, Ahmed E. Fetit, Fergus N. Doubal, Maria del C. Valdés-Hernández, Tom MacGillivray, Ian J. Deary
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030527907
MIUA
MIUA
The retinal and cerebral microvasculatures share many morphological and physiological properties. In this pilot we study the strength of the associations between morphological measurements of the retinal vasculature, obtained from fundus camera image
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8def874807673b09697b3085b1e5bcf0
https://doi.org/10.1007/978-3-030-52791-4_31
https://doi.org/10.1007/978-3-030-52791-4_31
Publikováno v:
Medical Image Understanding and Analysis ISBN: 9783030804312
MIUA
Annual Conference on Medical Image Understanding and Analysis (MIUA 2021)
MIUA
Annual Conference on Medical Image Understanding and Analysis (MIUA 2021)
Despite advances in deep learning, robustness under domain shift remains a major bottleneck in medical imaging settings. Findings on natural images suggest that deep neural models can show a strong textural bias when carrying out image classification
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1e91e5fa798f50c7aab41b7ad81d8532
Autor:
Ahmed E. Fetit, Alexander S. Doney, Stephen Hogg, Ruixuan Wang, Tom MacGillivray, Joanna M. Wardlaw, Fergus N. Doubal, Gareth J. McKay, Stephen McKenna, Emanuele Trucco
Publikováno v:
Fetit, A E, Doney, A S, Hogg, S, Wang, R, MacGillivray, T, Wardlaw, J M, Doubal, F N, McKay, G J, McKenna, S & Trucco, E 2019, ' A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features ', Scientific Reports, vol. 9, 3591 . https://doi.org/10.1038/s41598-019-40403-1
Fetit, A E, Doney, A S, Hogg, S, Wang, R, MacGillivray, T, Wardlaw, J M, Doubal, F N, McKay, G J, McKenna, S & Trucco, E 2019, ' A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features ', Scientific Reports, vol. 9, no. 1, pp. 3591 . https://doi.org/10.1038/s41598-019-40403-1
Scientific Reports, Vol 9, Iss 1, Pp 1-10 (2019)
Fetit, A E, Doney, A S, Hogg, S, Wang, R, MacGillivray, T, Wardlaw, J M, Doubal, F N, McKay, G J, McKenna, S & Trucco, E 2019, ' A multimodal approach to cardiovascular risk stratification in patients with type 2 diabetes incorporating retinal, genomic and clinical features ', Scientific Reports, vol. 9, no. 1, pp. 3591 . https://doi.org/10.1038/s41598-019-40403-1
Scientific Reports, Vol 9, Iss 1, Pp 1-10 (2019)
Cardiovascular diseases are a public health concern; they remain the leading cause of morbidity and mortality in patients with type 2 diabetes. Phenotypic information available from retinal fundus images and clinical measurements, in addition to geno
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c9dff4291dddb17d40d0f10a0d20e801
http://hdl.handle.net/10044/1/67938
http://hdl.handle.net/10044/1/67938
Autor:
Ahmed E, Fetit, Alexander S, Doney, Stephen, Hogg, Ruixuan, Wang, Tom, MacGillivray, Joanna M, Wardlaw, Fergus N, Doubal, Gareth J, McKay, Stephen, McKenna, Emanuele, Trucco
Publikováno v:
Scientific Reports
Cardiovascular diseases are a public health concern; they remain the leading cause of morbidity and mortality in patients with type 2 diabetes. Phenotypic information available from retinal fundus images and clinical measurements, in addition to geno
Publikováno v:
PRedictive Intelligence in MEdicine ISBN: 9783030003197
PRIME@MICCAI
PRIME@MICCAI
Magnetic resonance imaging (MRI) can generate multimodal scans with complementary contrast information, capturing various anatomical or functional properties of organs of interest. But whilst the acquisition of multiple modalities is favourable in cl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ed001e856837f1e2ef95c3afa040d6b4
https://doi.org/10.1007/978-3-030-00320-3_16
https://doi.org/10.1007/978-3-030-00320-3_16
Autor:
Ahmed E. Fetit
Publikováno v:
Standard and Super-Resolution Bioimaging Data Analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8d4d2eefd302fccf8003165872e8731d
https://doi.org/10.1002/9781119096948.ch9
https://doi.org/10.1002/9781119096948.ch9