Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Ahmad, Sk. Safique"'
Autor:
Ahmad, Sk. Safique, Khatun, Pinki
Backward error (\textit{BE}) analysis emerges as a powerful tool for assessing the backward stability and strong backward stability of iterative algorithms. In this paper, we explore structured \textit{BEs} for a class of three-by-three block saddle
Externí odkaz:
http://arxiv.org/abs/2408.14019
Autor:
Ahmad, Sk. Safique, Khatun, Pinki
In this paper, we propose a generalized shift-splitting (GSS) preconditioner, along with its two relaxed variants to solve the double saddle point problem (DSPP). The convergence of the associated GSS iterative method is analyzed, and sufficient cond
Externí odkaz:
http://arxiv.org/abs/2408.11750
Autor:
Ahmad, Sk. Safique, Khatun, Pinki
Significant research efforts have been dedicated recently to explore the structured backward error (BE) for saddle point problems (SPPs). However, these investigations overlook the inherent sparsity pattern of the coefficient matrix of the SPP. Moreo
Externí odkaz:
http://arxiv.org/abs/2408.11610
Autor:
Ahmad, Sk. Safique, Khatun, Pinki
This paper proposes a new parameterized enhanced shift-splitting (PESS) preconditioner to solve the three-by-three block saddle point problem (SPP). Additionally, we introduce a local PESS (LPESS) preconditioner by relaxing the PESS preconditioner. N
Externí odkaz:
http://arxiv.org/abs/2402.17357
Autor:
Ahmad, Sk. Safique, Bhadala, Neha
This paper presents an efficient method for obtaining the least squares Hermitian solutions of the reduced biquaternion matrix equation $(AXB, CXD) = (E, F )$. The method leverages the real representation of reduced biquaternion matrices. Furthermore
Externí odkaz:
http://arxiv.org/abs/2311.06472
Autor:
Ahmad, Sk. Safique, Bhadala, Neha
This paper presents a framework for computing the structure-constrained least squares solutions to the generalized reduced biquaternion matrix equations (RBMEs). The investigation focuses on three different matrix equations: a linear matrix equation
Externí odkaz:
http://arxiv.org/abs/2311.06461
Autor:
Ahmad, Sk. Safique, Bhadala, Neha
This paper presents the reduced biquaternion mixed least squares and total least squares (RBMTLS) method for solving an overdetermined system $AX \approx B$ in the reduced biquaternion algebra. The RBMTLS method is suitable when matrix $B$ and a few
Externí odkaz:
http://arxiv.org/abs/2311.06464
Autor:
Ahmad, Sk. Safique, Khatun, Pinki
Perturbation theory plays a crucial role in sensitivity analysis, which is extensively used to assess the robustness of numerical techniques. To quantify the relative sensitivity of any problem, it becomes essential to investigate structured conditio
Externí odkaz:
http://arxiv.org/abs/2306.12177
Autor:
Ahmad, Sk. Safique, Khatun, Pinki
Publikováno v:
Electronic Transactions on Numerical Analysis, 2024
This paper addresses structured normwise, mixed, and componentwise condition numbers (CNs) for a linear function of the solution to the generalized saddle point problem (GSPP). We present a general framework that enables us to measure the structured
Externí odkaz:
http://arxiv.org/abs/2305.05629
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.