Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Ahamed, Md. Atik"'
Autor:
Ahamed, Md Atik, Cheng, Qiang
Time series classification (TSC) on multivariate time series is a critical problem. We propose a novel multi-view approach integrating frequency-domain and time-domain features to provide complementary contexts for TSC. Our method fuses continuous wa
Externí odkaz:
http://arxiv.org/abs/2406.04419
Autor:
Ahamed, Md Atik, Cheng, Qiang
Long-term time-series forecasting remains challenging due to the difficulty in capturing long-term dependencies, achieving linear scalability, and maintaining computational efficiency. We introduce TimeMachine, an innovative model that leverages Mamb
Externí odkaz:
http://arxiv.org/abs/2403.09898
Autor:
Ahamed, Md Atik, Cheng, Qiang
Despite the prevalence of images and texts in machine learning, tabular data remains widely used across various domains. Existing deep learning models, such as convolutional neural networks and transformers, perform well however demand extensive prep
Externí odkaz:
http://arxiv.org/abs/2401.08867
Medical image classification is one of the most important tasks for computer-aided diagnosis. Deep learning models, particularly convolutional neural networks, have been successfully used for disease classification from medical images, facilitated by
Externí odkaz:
http://arxiv.org/abs/2305.02927
Autor:
Ahamed, Md. Atik, Sadia, Rabeya Tus
Distinguishing normal from malignant and determining the tumor type are critical components of brain tumor diagnosis. Two different kinds of dataset are investigated using state-of-the-art CNN models in this research work. One dataset(binary) has ima
Externí odkaz:
http://arxiv.org/abs/2206.01735
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Giger, Maryellen L., Whitney, Heather M., Drukker, Karen, Li, Hui, Ahamed, Md Atik, McFarland, Braxton, Wang, Xiaoqin, Chen, Jin, Imran, Abdullah-Al-Zubaer
Publikováno v:
Proceedings of SPIE; May 2024, Vol. 13174 Issue: 1 p131741S-131741S-5, 1185675p
Autor:
Lee W; Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea. Electronic address: ewonkyong@ewhain.net., Wagner F; Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, Erlangen 91054, Germany., Galdran A; Universitat Pompeu Fabra, Plaça de la Mercè, 12, Ciutat Vella, Barcelona 08002, Spain., Shi Y; Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA., Xia W; Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA., Wang G; Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA., Mou X; Xi'an Jiaotong University, 28, Xianning West Road, Xi'an City, Shaanxi Province 710049, People's Republic of China., Ahamed MA; Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA., Imran AAZ; Department of Computer Science, University of Kentucky, Lexington, KY 40506, USA., Oh JE; Chungnam National University College of Medicine, 266 Munghwa-ro, Daejeon 35015, Republic of Korea., Kim K; MGH and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA., Baek JT; Chungnam National University College of Medicine, 266 Munghwa-ro, Daejeon 35015, Republic of Korea., Lee D; Chungnam National University College of Medicine, 266 Munghwa-ro, Daejeon 35015, Republic of Korea., Hong B; Chungnam National University College of Medicine, 266 Munghwa-ro, Daejeon 35015, Republic of Korea., Tempelman P; Delft University of Technology, Mekelweg 5, CD Delft 2628, Netherlands., Lyu D; Leiden University, Rapenburg 70, EZ Leiden 2311, Netherlands., Kuiper A; Delft University of Technology, Mekelweg 5, CD Delft 2628, Netherlands., van Blokland L; Delft University of Technology, Mekelweg 5, CD Delft 2628, Netherlands., Calisto MB; Universidad San Francisco de Quito, Campus Cumbayá, Diego de Robles s/n, Quito 170901, Ecuador., Hsieh S; Mayo Clinic, 200 First St., SW Rochester, MN 55905, USA., Han M; Yonsei University, A50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea., Baek J; Yonsei University, A50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea., Maier A; Friedrich-Alexander-Universität Erlangen-Nürnberg, Schloßplatz 4, Erlangen 91054, Germany., Wang A; Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA., Gold GE; Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA., Choi JH; Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea. Electronic address: choij@ewha.ac.kr.
Publikováno v:
Medical image analysis [Med Image Anal] 2024 Sep 06; Vol. 99, pp. 103343. Date of Electronic Publication: 2024 Sep 06.