Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Ahad Rahimi"'
Autor:
Maryam Ahmadi, Ahad Rahimi
Publikováno v:
Journal of Algebra and Its Applications.
Autor:
Ahad Rahimi
Let $$S=K[x_1, \dots , x_m, y_1, \dots , y_n]$$ be the standard bigraded polynomial ring over a field K. Let M be a finitely generated bigraded S-module and $$Q=(y_1, \dots , y_n)$$ . We say M has maximal depth with respect to Q if there is an associ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e118879d3624f0bda091a5f313eb12f8
Autor:
Ahad Rahimi, Hassan Noormohammadi
Publikováno v:
Rendiconti del Seminario Matematico della Università di Padova. 140:221-236
Autor:
Ahad Rahimi
Let $(R,\mm)$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\pp$ of $M$ such that $\depth M=\dim R/\pp$. In this paper we study squarefree monomial ideals which have
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d8af8e67ba0babfc9313b1894cff7d28
Autor:
Ahad Rahimi
Let $(R,\mathfrak{m})$ be a Noetherian local ring and $M$ a finitely generated $R$-module. We say $M$ has maximal depth if there is an associated prime $\mathfrak{p}$ of $M$ such that depth $M=\dim R/\mathfrak{p}$. In this paper, we study finitely ge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::618b93bcacf587e762a742b8623bdd3c
Autor:
Leila Parsaei Majd, Ahad Rahimi
Publikováno v:
Czechoslovak Mathematical Journal. 65:1011-1022
Let K be a field and S = K[x1, …, xm, y1,…, yn] be the standard bigraded polynomial ring over K. In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” S-modules with respect to Q = (y
Autor:
Ahad Rahimi
Publikováno v:
Rocky Mountain J. Math. 47, no. 2 (2017), 621-635
Let $K$ be a field, $S=K[x_1,\ldots ,x_m, y_1,\ldots , y_n]$ a standard bigraded polynomial ring, and $M$ a finitely generated bigraded $S$-module. In this paper, we study the sequentially Cohen-Macaulayness of~$M$ with respect to $Q=(y_1,\ldots ,y_n
Publikováno v:
Colloquium Mathematicum. 127:161-172
Autor:
Ahad Rahimi
Publikováno v:
Journal of Algebra. 323(6):1745-1757
In this paper we study the local cohomology of finitely generated bigraded modules over a standard bigraded polynomial ring which have only one nonvanishing local cohomology with respect to one of the irrelevant bigraded ideals.
Autor:
Ahad Rahimi, Jürgen Herzog
In this paper we consider bi-Cohen-Macaulay graphs, and give a complete classification of such graphs in the case they are bipartite or chordal. General bi-Cohen-Macaulay graphs are classified up to separation. The inseparable bi-Cohen-Macaulay graph
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::94cd9a26f91a084d123df5cb518da430