Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Agustina La Greca"'
Autor:
Mariia Lapaeva, Agustina La Greca Saint-Esteven, Philipp Wallimann, Manuel Günther, Ender Konukoglu, Nicolaus Andratschke, Matthias Guckenberger, Stephanie Tanadini-Lang, Riccardo Dal Bello
Publikováno v:
Physics and Imaging in Radiation Oncology, Vol 24, Iss , Pp 173-179 (2022)
Background and purpose: The requirement of computed tomography (CT) for radiotherapy planning may be bypassed by synthetic CT (sCT) generated from magnetic resonance (MR), which has recently led to the clinical introduction of MR-only radiotherapy fo
Externí odkaz:
https://doaj.org/article/53ed18ae4e234cc9ab771d9034a7b776
Autor:
Agustina La Greca Saint-Esteven, Ricardo Dal Bello, Mariia Lapaeva, Lisa Fankhauser, Bertrand Pouymayou, Ender Konukoglu, Nicolaus Andratschke, Panagiotis Balermpas, Matthias Guckenberger, Stephanie Tanadini-Lang
Publikováno v:
Physics and Imaging in Radiation Oncology, Vol 27, Iss , Pp 100471- (2023)
Background and purpose: Synthetic computed tomography (sCT) scans are necessary for dose calculation in magnetic resonance (MR)-only radiotherapy. While deep learning (DL) has shown remarkable performance in generating sCT scans from MR images, resea
Externí odkaz:
https://doaj.org/article/3296370f8b764a66976eee3f94210a86
Autor:
Riccardo Dal Bello, Mariia Lapaeva, Agustina La Greca Saint-Esteven, Philipp Wallimann, Manuel Günther, Ender Konukoglu, Nicolaus Andratschke, Matthias Guckenberger, Stephanie Tanadini-Lang
Publikováno v:
Physics and Imaging in Radiation Oncology, Vol 27, Iss , Pp 100464- (2023)
Background and purpose: The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic C
Externí odkaz:
https://doaj.org/article/a4cb0303373a489c828d29bcf5b74fe3
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vincent Andrearczyk, Valentin Oreiller, Moamen Abobakr, Azadeh Akhavanallaf, Panagiotis Balermpas, Sarah Boughdad, Leo Capriotti, Joel Castelli, Catherine Cheze Le Rest, Pierre Decazes, Ricardo Correia, Dina El-Habashy, Hesham Elhalawani, Clifton D. Fuller, Mario Jreige, Yomna Khamis, Agustina La Greca, Abdallah Mohamed, Mohamed Naser, John O. Prior, Su Ruan, Stephanie Tanadini-Lang, Olena Tankyevych, Yazdan Salimi, Martin Vallières, Pierre Vera, Dimitris Visvikis, Kareem Wahid, Habib Zaidi, Mathieu Hatt, Adrien Depeursinge
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031274190
Head and Neck Tumor Segmentation and Outcome Prediction-Third Challenge
Head and Neck Tumor Segmentation and Outcome Prediction-Third Challenge, Sep 2022, Singapore, Singapore. pp.1-30, ⟨10.1007/978-3-031-27420-6_1⟩
Head and Neck Tumor Segmentation and Outcome Prediction-Third Challenge
Head and Neck Tumor Segmentation and Outcome Prediction-Third Challenge, Sep 2022, Singapore, Singapore. pp.1-30, ⟨10.1007/978-3-031-27420-6_1⟩
International audience; This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Comp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d79b573a15e947eb66bc272f918db2a0
https://doi.org/10.1007/978-3-031-27420-6_1
https://doi.org/10.1007/978-3-031-27420-6_1
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031274190
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f7ff9a54f1b0bad0dab835267dca1630
https://doi.org/10.1007/978-3-031-27420-6_9
https://doi.org/10.1007/978-3-031-27420-6_9
Autor:
Jian Fang, Eun Yeong Bergsdorf, Vincent Unterreiner, Agustina La Greca, Oleksandr Dergai, Isabelle Claerr, Ngoc-Hong Luong-Nguyen, Inga Galuba, Ioannis Moutsatsos, Shinji Hatakeyama, Paul Groot-Kormelink, Fanning Zeng, Xian Zhang
Recent advances with deep neural networks have shown the feasibility of acquiring brightfield images with transmitted light and applying in-silico labeling to predict fluorescent images. We have developed a novel in-silico labeling method based on a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::bfb5a1a731241c48e85c805d511cb953
https://doi.org/10.1101/2022.09.11.507500
https://doi.org/10.1101/2022.09.11.507500
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sandra Nuyts, David Robben, Julie van der Veen, Tom Depuydt, Karin Haustermans, S. Willems, Frederik Maes, Wouter Crijns, Agustina La Greca Saint-Esteven
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030012007
OR 2.0/CARE/CLIP/ISIC@MICCAI
OR 2.0/CARE/CLIP/ISIC@MICCAI
© Springer Nature Switzerland AG 2018. Delineation of organs at risk (OAR) on CT images is a crucial step in the planning of radiotherapy treatment. Manual delineation is time-consuming and high interrater variability is observed within and across r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02d3fb97cb377057b7bb726395112dc3
https://doi.org/10.1007/978-3-030-01201-4_24
https://doi.org/10.1007/978-3-030-01201-4_24