Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Aguilera, Néstor E."'
We study the relationship between the vertices of an up-monotone polyhedron $R$ and those of the polytope $P$ obtained by truncating $R$ with the unit hypercube. When $R$ has binary vertices, we characterize the vertices of $P$ in terms of the vertic
Externí odkaz:
http://arxiv.org/abs/1710.02491
Publikováno v:
Discrete Applied Mathematics, Volume 218, Pages 40-56, 2017
We describe the adjacency of vertices of the (unbounded version of the) set covering polyhedron, in a similar way to the description given by Chvatal for the stable set polytope. We find a sufficient condition for adjacency, and characterize it with
Externí odkaz:
http://arxiv.org/abs/1406.6015
A new nonparametric estimator of a convex regression function in any dimension is proposed and its convergence properties are studied. We start by using any estimator of the regression function and we \emph{convexify} it by taking the convex envelope
Externí odkaz:
http://arxiv.org/abs/1006.2859
Autor:
Aguilera, Néstor E., Morin, Pedro
Many problems of theoretical and practical interest involve finding an optimum over a family of convex functions. For instance, finding the projection on the convex functions in $H^k(\Omega)$, and optimizing functionals arising from some problems in
Externí odkaz:
http://arxiv.org/abs/0804.1693
Publikováno v:
Mathematics of Operations Research, 2002 Aug 01. 27(3), 460-469.
Externí odkaz:
https://www.jstor.org/stable/3690446
Publikováno v:
In Discrete Applied Mathematics 19 February 2017 218:40-56
Publikováno v:
In Discrete Applied Mathematics 19 February 2014 164 Part 2:360-372
Autor:
AGUILERA, NÉSTOR E., MORIN, PEDRO
Publikováno v:
SIAM Journal on Numerical Analysis, 2009 Jan 01. 47(4), 3139-3157.
Externí odkaz:
https://www.jstor.org/stable/27862769
Autor:
Aguilera, Néstor E.
Publikováno v:
In Discrete Applied Mathematics 2010 158(12):1343-1356
Publikováno v:
In Discrete Applied Mathematics 2010 158(5):379-396