Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Aguilar, Hernán A."'
Autor:
González-Aguilar, Hernán, Orden, David, Pérez-Lantero, Pablo, Rappaport, David, Seara, Carlos, Tejel, Javier, Urrutia, Jorge
Publikováno v:
SIAM Journal on Computing 50(1) (2021), 145-170
Let $P$ be a set of $n$ points in the plane. We consider a variation of the classical Erd\H{o}s-Szekeres problem, presenting efficient algorithms with $O(n^3)$ running time and $O(n^2)$ space complexity that compute: (1) A subset $S$ of $P$ such that
Externí odkaz:
http://arxiv.org/abs/1907.07441
Autor:
Duque, Frank, González-Aguilar, Hernán, Hernández-Vélez, César, Leaños, Jesús, Medina, Carolina
Publikováno v:
Electron. J. Combin. 25 (2018), no. 2, Paper 2.43, 11 pp
A plane drawing of a graph is {\em cylindrical} if there exist two concentric circles that contain all the vertices of the graph, and no edge intersects (other than at its endpoints) any of these circles. The {\em cylindrical crossing number} of a gr
Externí odkaz:
http://arxiv.org/abs/1708.01942
Autor:
Palacios Huatuco, René M., Ramírez, Mariano F., Coloccini, Alejandro, Aguilar, Hernán A., Mayer, Horacio F.
Publikováno v:
European Journal of Plastic Surgery; 12/30/2024, Vol. 48 Issue 1, p1-14, 14p
Autor:
Aichholzer, Oswin, Fabila-Monroy, Ruy, González-Aguilar, Hernán, Hackl, Thomas, Heredia, Marco A., Huemer, Clemens, Urrutia, Jorge, Valtr, Pavel, Vogtenhuber, Birgit
We consider a variation of the classical Erd\H{o}s-Szekeres problems on the existence and number of convex $k$-gons and $k$-holes (empty $k$-gons) in a set of $n$ points in the plane. Allowing the $k$-gons to be non-convex, we show bounds and structu
Externí odkaz:
http://arxiv.org/abs/1409.0081
A {\em convex hole} (or {\em empty convex polygon)} of a point set $P$ in the plane is a convex polygon with vertices in $P$, containing no points of $P$ in its interior. Let $R$ be a bounded convex region in the plane. We show that the expected numb
Externí odkaz:
http://arxiv.org/abs/1206.0805
Autor:
Bautista-Santiago, Crevel, Cano, Javier, Fabila-Monroy, Ruy, Flores-Peñaloza, David, González-Aguilar, Hernán, Lara, Dolores, Sarmiento, Eliseo, Urrutia, Jorge
Let $P$ be a set of $n$ points in general position in the plane. A subset $I$ of $P$ is called an \emph{island} if there exists a convex set $C$ such that $I = P \cap C$. In this paper we define the \emph{generalized island Johnson graph} of $P$ as t
Externí odkaz:
http://arxiv.org/abs/1202.3455
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Aichholzer, Oswin, Fabila-Monroy, Ruy, González-Aguilar, Hernán, Hackl, Thomas, Heredia, Marco A., Huemer, Clemens, Urrutia, Jorge, Valtr, Pavel, Vogtenhuber, Birgit
Publikováno v:
In Computational Geometry: Theory and Applications August 2015 48(7):528-537
Autor:
Aichholzer, Oswin, Fabila-Monroy, Ruy, González-Aguilar, Hernán, Hackl, Thomas, Heredia, Marco A., Huemer, Clemens, Urrutia, Jorge, Vogtenhuber, Birgit
Publikováno v:
In Computational Geometry: Theory and Applications August 2014 47(6):644-650
Publikováno v:
In Computational Geometry: Theory and Applications August 2013 46(6):725-733