Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Agueh, Martial"'
Autor:
Agueh, Martial, Carlier, Guillaume
We consider a one-dimensional kinetic model of granular media in the case where the interaction potential is quadratic. Taking advan- tage of a simple first integral, we can use a reformulation (equivalent to the initial kinetic model for classical s
Externí odkaz:
http://arxiv.org/abs/1506.05520
We use optimal mass transport to provide a new proof and a dual formula to the Moser-Onofri inequality on $\s^2$ in the same spirit as the approach of Cordero-Erausquin, Nazaret and Villani to the Sobolev inequality and of Agueh-Ghoussoub-Kang to mor
Externí odkaz:
http://arxiv.org/abs/1501.01267
We use optimal transportation techniques to show uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system. Our proof extends the method used by Loeper in J. Math. Pures Appl. 86, 68-79 (2006) to obtain uniqueness
Externí odkaz:
http://arxiv.org/abs/1107.4782
Publikováno v:
Arch. Rational Mech. Anal. 205(3):827-869 (2012)
We show that a smooth, small enough Cauchy datum launches a unique classical solution of the relativistic Vlasov-Darwin (RVD) system globally in time. A similar result is claimed in Comm. Math. Sci. 6, 749-764 (2008) following the work in Int. Mat. R
Externí odkaz:
http://arxiv.org/abs/1107.0947
We present a numerical method to solve the optimal transport problem with a quadratic cost when the source and target measures are periodic probability densities. This method is based on a numerical resolution of the corresponding Monge-Amp\`ere equa
Externí odkaz:
http://arxiv.org/abs/1009.6039
We study the long-time asymptotics of the doubly nonlinear diffusion equation $\rho_t={div}({|\nabla\rho^m|^{p-2}\nabla\rho^m})$ in $\RR^n$, in the range $\frac{n-p}{n(p-1)}\frac{n-p+1}{n(p-1)}$ and $1p\infty$ where the mass of the solution is con
Externí odkaz:
http://arxiv.org/abs/0901.1068
Autor:
Agueh, Martial
We obtain solutions of the nonlinear degenerate parabolic equation \[ \frac{\partial \rho}{\partial t} = {div} \Big\{\rho \nabla c^\star [ \nabla (F^\prime(\rho)+V) ] \Big\} \] as a steepest descent of an energy with respect to a convex cost function
Externí odkaz:
http://arxiv.org/abs/math/0309410
Autor:
Agueh, Martial, Carlier, Guillaume
Publikováno v:
In Comptes rendus - Mathématique July 2017 355(7):812-818
Autor:
Bowles, Malcolm, Agueh, Martial
Publikováno v:
In Applied Mathematics Letters April 2015 42:30-35