Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Agore Ana"'
In general, universal (co)measuring (co)monoids and universal (co)acting bi/Hopf monoids, which prove to be a useful tool in the classification of quantum symmetries, do not always exist. In order to ensure their existence, the support of a given obj
Externí odkaz:
http://arxiv.org/abs/2406.17684
The universal (co)acting bi/Hopf algebras introduced by Yu.\,I.~Manin, M.~Sweedler and D.~Tambara, the universal Hopf algebra of a given (co)module structure, as well as the universal group of a grading, introduced by J.~Patera and H.~Zassenhaus, fin
Externí odkaz:
http://arxiv.org/abs/2406.17677
Autor:
Agore Ana, Militaru Gigel
Publikováno v:
Open Mathematics, Vol 10, Iss 2, Pp 722-739 (2012)
Externí odkaz:
https://doaj.org/article/d5eec5fc188c43bfa110a24aeba5c9a8
Publikováno v:
Commun. Contemp. Math. 25 (2023), 2150095 (40 pages)
We develop a theory which unifies the universal (co)acting bi/Hopf algebras as studied by Sweedler, Manin and Tambara with the recently introduced \cite{AGV1} bi/Hopf-algebras that are universal among all support equivalent (co)acting bi/Hopf algebra
Externí odkaz:
http://arxiv.org/abs/2005.12954
Publikováno v:
Journal of Noncommutative Geometry, 15:3 (2021), 951-993
We introduce the notion of support equivalence for (co)module algebras (over Hopf algebras), which generalizes in a natural way (weak) equivalence of gradings. We show that for each equivalence class of (co)module algebra structures on a given algebr
Externí odkaz:
http://arxiv.org/abs/1812.04563
Autor:
Agore, Ana-Loredana
Publikováno v:
SIGMA 14 (2018), 027, 14 pages
We completely describe by generators and relations and classify all Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K[C_{n}]$: they are $nm^{2}$-dimensional quantum groups $T_{nm^{2}}^ {\omega}(q)$ as
Externí odkaz:
http://arxiv.org/abs/1611.05674
Autor:
Agore, Ana-Loredana, Militaru, Gigel
Publikováno v:
SIGMA 10 (2014), 065, 16 pages
For a perfect Lie algebra $\mathfrak{h}$ we classify all Lie algebras containing $\mathfrak{h}$ as a subalgebra of codimension $1$. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product $\mathfrak{h}
Externí odkaz:
http://arxiv.org/abs/1312.4018
Publikováno v:
SIGMA 10 (2014), 049, 12 pages
Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages, arXiv:1207.0411] we classify all coalgebra split extensions of $H_4$ by $k[C_n]$, where $C_n$ is the cyclic group of
Externí odkaz:
http://arxiv.org/abs/1210.7700
Autor:
Agore, Ana-Loredana, Fratila, Dragos
Publikováno v:
Czechoslovak Math. J. 60 (2010), 889-901
All crossed products of two cyclic groups are explicitly described using generators and relations. A necessary and sufficient condition for an extension of a group by a group to be a cyclic group is given.
Comment: To appear in Czechoslovak Math
Comment: To appear in Czechoslovak Math
Externí odkaz:
http://arxiv.org/abs/0809.0433