Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Aghasadeghi, Amir"'
Temporal graphs represent graph evolution over time, and have been receiving considerable research attention. Work on expressing temporal graph patterns or discovering temporal motifs typically assumes relatively simple temporal constraints, such as
Externí odkaz:
http://arxiv.org/abs/2205.14269
In the last decade, substantial progress has been made towards standardizing the syntax of graph query languages, and towards understanding their semantics and complexity of evaluation. In this paper, we consider temporal property graphs (TPGs) and p
Externí odkaz:
http://arxiv.org/abs/2107.01241
In this paper, we propose two new features for estimating phrase-based machine translation parameters from mainly monolingual data. Our method is based on two recently introduced neural network vector representation models for words and sentences. It
Externí odkaz:
http://arxiv.org/abs/1506.00406
Publikováno v:
VLDB Journal International Journal on Very Large Data Bases; Jan2024, Vol. 33 Issue 1, p25-47, 23p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
2022 IEEE 38th International Conference on Data Engineering (ICDE).
In the last decade, substantial progress has been made towards standardizing the syntax of graph query languages, and towards understanding their semantics and complexity of evaluation. In this paper, we consider temporal property graphs (TPGs) and p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
The VLDB Journal.
Temporal graphs represent graph evolution over time, and have been receiving considerable research attention. Work on expressing temporal graph patterns or discovering temporal motifs typically assumes relatively simple temporal constraints, such as