Zobrazeno 1 - 10
of 173
pro vyhledávání: '"Ageev, Oleg. A."'
Autor:
Il'ina, Marina V., Osotova, Olga I., Rudyk, Nikolay N., Khubezhov, Soslan A., Pankov, Ilya V., Ageev, Oleg A., Il'in, Oleg I.
Publikováno v:
In Diamond & Related Materials June 2022 126
Autor:
Il'ina, Marina, Il'in, Oleg, Osotova, Olga, Khubezhov, Soslan, Rudyk, Nikolay, Pankov, Ilya, Fedotov, Alexander, Ageev, Oleg
Publikováno v:
In Carbon 30 April 2022 190:348-358
Autor:
Ageev, Oleg N.
We introduce a notion being a $k$-fold Lebesgue function for measure preserving transformations, where any $2$-fold Lebesgue function is just ordinary Lebesgue. We discuss how this new metrical isomorphisms invariant of dynamical systems is related t
Externí odkaz:
http://arxiv.org/abs/1702.04230
Autor:
Balakirev, Sergey V., Kirichenko, Danil V., Chernenko, Natalia E., Shandyba, Nikita A., Eremenko, Mikhail M., Ageev, Oleg. A., Solodovnik, Maxim S.
Publikováno v:
In Applied Surface Science 15 March 2022 578
Publikováno v:
In Diamond & Related Materials March 2022 123
Autor:
Ageev, Oleg V., Dowgiałło, Andrzej, Sterczyńska, Monika, Piepiórka-Stepuk, Joanna, Giurgiulescu, Liviu, Janowicz, Monika, Jakubowski, Marek
Publikováno v:
In Journal of Food Engineering October 2021 307
Autor:
Sorokin, Anatoliy P, Konyushok, Andrey A, Ageev, Oleg A, Zarubina, Natalia V, Ivanov, Vladimir V, Wang, Jinxi
Publikováno v:
Energy Exploration & Exploitation, 2019 Nov 01. 37(6), 1721-1736.
Externí odkaz:
https://www.jstor.org/stable/26785615
Autor:
Jakubowski, Marek, Stachnik, Marta, Sterczyńska, Monika, Matysko, Robert, Piepiórka-Stepuk, Joanna, Dowgiałło, Andrzej, Ageev, Oleg V., Knitter, Remigiusz
Publikováno v:
In Journal of Food Engineering October 2019 258:27-33
Autor:
Ageev, Oleg N.
For every countable abelian group $G$ we find the set of all its subgroups $H$ ($H\leq G$) such that a typical measure-preserving $H$-action on a standard atomless probability space $(X,\mathcal{F}, \mu)$ can be extended to a free measure-preserving
Externí odkaz:
http://arxiv.org/abs/1212.2660
Autor:
Ageev, Oleg N.
It is shown that for every $\alpha$, where $\alpha\in [0, 1/2]$, there exists an $\alpha$-rigid transformation whose spectrum has Lebesgue component. This answers the question posed by Klemes and Reinhold in [7]. We apply a certain correspondence bet
Externí odkaz:
http://arxiv.org/abs/0905.1091