Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Afshin Azadikhah"'
Autor:
Yongkai Liu, Guang Yang, Melina Hosseiny, Afshin Azadikhah, Sohrab Afshari Mirak, Qi Miao, Steven S. Raman, Kyunghyun Sung
Publikováno v:
IEEE Access, Vol 8, Pp 151817-151828 (2020)
Automatic segmentation of prostatic zones on multi-parametric MRI (mpMRI) can improve the diagnostic workflow of prostate cancer. We designed a spatial attentive Bayesian deep learning network for the automatic segmentation of the peripheral zone (PZ
Externí odkaz:
https://doaj.org/article/4a6487d82e084725b40029a62f56e93d
Autor:
Yongkai Liu, Guang Yang, Sohrab Afshari Mirak, Melina Hosseiny, Afshin Azadikhah, Xinran Zhong, Robert E. Reiter, Yeejin Lee, Steven S. Raman, Kyunghyun Sung
Publikováno v:
IEEE Access, Vol 7, Pp 163626-163632 (2019)
Our main objective in the paper is to develop a novel deep learning-based algorithm for automatic segmentation of prostate zones and to evaluate the performance of the algorithm on an additional independent testing dataset in comparison with inter-re
Externí odkaz:
https://doaj.org/article/5646b8eb73dc45f6b8bad1645594afd3
Autor:
Steven Cen, Vinay Duddalwar, Darryl Hwang, Bhushan Desai, Bino Varghese, Mingxi Lei, Afshin Azadikhah, Assad A. Oberai, Xiaomeng Lei
Publikováno v:
J Digit Imaging
The image biomarkers standardization initiative (IBSI) was formed to address the standardization of extraction of quantifiable imaging metrics. Despite its effort, there remains a lack of consensus or established guidelines regarding radiomic feature
Autor:
Afshin Azadikhah, Bino Abel Varghese, Xiaomeng Lei, Chloe Martin-King, Steven Yong Cen, Vinay Anant Duddalwar
Publikováno v:
The British journal of radiology. 95(1137)
Objective: To perform a systematic assessment and analyze the quality of radiomics methodology in current literature in the evaluation of renal masses using the Radiomics Quality Score (RQS) approach. Methods: We systematically reviewed recent radiom
Autor:
Melina Hosseiny, Kyung Hyun Sung, Ely Felker, Voraparee Suvannarerg, Teeravut Tubtawee, Ariel Shafa, Krishan R. Arora, Justin Ching, Anjalie Gulati, Afshin Azadikhah, Xiaodong Zhong, James Sayre, David Lu, Steven S Raman
Publikováno v:
The British journal of radiology. 95(1136)
Objective: We aimed to investigate if the use of read-out segmented echoplanar imaging with additional two-dimensional navigator correction (Readout Segmentation of Long Variable Echo, RESOLVE) for acquiring prostate diffusion-weighted imaging (DWI)
Autor:
Derek Liu, Bino Varghese, Darryl Hwang, Xiaomeng Lei, Afshin Azadikhah, Komal Dani, Alex Raman, Steven Cen, Manju Aron, Harris Zahoor, Imran Siddiqi, Inderbir Gill, Vinay Duddalwar
Publikováno v:
Journal of Urology. 207
Autor:
Ely Felker, Preeti Ahuja, Melina Hosseiny, Afshin Azadikhah, David S.K. Lu, Steven S. Raman, Danielle Ponzini, James Sayre, Voraparee Suvannarerg
Publikováno v:
Journal of Vascular and Interventional Radiology. 31:1619-1626
Purpose To evaluate the diagnostic yield of 3T in-bore magnetic resonance-guided biopsy (3T IB-MRGB) for detection of clinically significant prostate cancer (csPCa), based on assessment using the Prostate Imaging Reporting and Data System version 2.1
Autor:
Robert E. Reiter, Melina Hosseiny, Anthony Sisk, Sepideh Shakeri, Steven S. Raman, Amirhossein Mohammadian Bajgiran, Sohrab Afshari Mirak, Afshin Azadikhah, Holden H. Wu, Zhaohuan Zhang, Dieter R. Enzmann, Kyunghyun Sung, Clara E. Magyar, Alan Priester
Publikováno v:
Radiology. 296:348-355
Background Microstructural MRI has the potential to improve diagnosis and characterization of prostate cancer (PCa), but validation with histopathology is lacking. Purpose To validate ex vivo diffusion-relaxation correlation spectrum imaging (DR-CSI)
Autor:
Steven S. Raman, Yongkai Liu, Guang Yang, Afshin Azadikhah, Kyunghyun Sung, Melina Hosseiny, Qi Miao, Sohrab Afshari Mirak
Publikováno v:
IEEE Access, Vol 8, Pp 151817-151828 (2020)
IEEE Access
IEEE Access
Automatic segmentation of prostatic zones on multi-parametric MRI (mpMRI) can improve the diagnostic workflow of prostate cancer. We designed a spatial attentive Bayesian deep learning network for the automatic segmentation of the peripheral zone (PZ
Publikováno v:
Journal of Vascular and Interventional Radiology. 31:S152-S153