Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Afef Kacem"'
Autor:
Afef Kacem
Publikováno v:
ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 23, Iss 2 (2024)
Extracting mathematical formulas from images of scientific documents and converting them into structured data for storage in a database is essential for their further use. However, recognizing and extracting math formulas automatically, rapidly, and
Externí odkaz:
https://doaj.org/article/bdafeb706daf43dc843b3c73e9a836b6
Autor:
Afef Kacem Echi, Takwa Ben Aïcha Gader
Publikováno v:
ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 23, Iss 1 (2024)
In this work, we present two advanced models for identifying script writers, leveraging the power of deep learning. The proposed systems utilize the new vision Swin Transformer and ResNeSt-50. Swin Transformer is known for its robustness to variation
Externí odkaz:
https://doaj.org/article/fe5fe13215e54a8294706804aafbe22a
Publikováno v:
ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 22, Iss 1 (2023)
Prostate Cancer (PCa) is one of the most common diseases in adult males. Currently, mp-MRI imaging represents the most promising technique for screening, diagnosing, and managing this cancer. However, the multiple mp-MRI sequences' visual interpretat
Externí odkaz:
https://doaj.org/article/e63ccd2640a04cd8ab0625aabedc7727
Autor:
takwa Ben Aicha, Afef Kacem Echi
Publikováno v:
ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 21, Iss 1 (2022)
Word extraction is one of the most critical steps in handwritten recognition systems. It is challenging for many reasons, such as the variability of handwritten writing styles, touching and overlapping characters, skewness problems, diacritics, ascen
Externí odkaz:
https://doaj.org/article/93c043474d1b4e3388aecd8f96653b8e
Publikováno v:
ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 14, Iss 2 (2015)
In this paper, we present an approach for Arabic and Latin script and its type identification based on Histogram of Oriented Gradients (HOG) descriptors. HOGs are first applied at word level based on writing orientation analysis. Then, they are exten
Externí odkaz:
https://doaj.org/article/97b14e564637421199682d696dc6cbf6
Publikováno v:
ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 13, Iss 3 (2014)
This paper describes a system for off-line recognition of handwritten Arabic words. It uses simple and easily extractable features to construct feature vectors for words in the vocabulary. Some of these features are statistical, based on pixel distri
Externí odkaz:
https://doaj.org/article/caa5b33244a44af18cc4feb2f9b4c3d8
Publikováno v:
ELCVIA Electronic Letters on Computer Vision and Image Analysis, Vol 13, Iss 1 (2014)
This paper gathers some contributions to script and its nature identification. Different sets of features have been employed successfully for discriminating between handwritten and machine-printed Arabic and Latin scripts. They include some well esta
Externí odkaz:
https://doaj.org/article/8713a24e6602413eaf459eb4fbe02a59
Autor:
Takwa Ben Aïcha Gader, Afef Kacem Echi
Publikováno v:
Machine Graphics and Vision. 31:49-73
This work proposes a segmentation-free approach to Arabic Handwritten Text Recognition (AHTR): an attention-based Convolutional Neural Network - Recurrent Neural Network - Connectionist Temporal Classification (CNN-RNN-CTC) deep learning architecture
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Khalil Barbouchi, Dhekra El Hamdi, Ines Elouedi, Takwa Ben Aïcha, Afef Kacem Echi, Ihsen Slim
Publikováno v:
International Journal of Imaging Systems and Technology.