Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Adriano, Levi"'
Autor:
TOKURA, Willian1 williantokura@ufgd.edu.br, ADRIANO, Levi2 levi@ufg.br, BATISTA, Elismar3 elismardb@gmail.com, BEZERRA, Adriano4 adriano.bezerra@ifgoiano.edu.br
Publikováno v:
Turkish Journal of Mathematics. 2024, Vol. 48 Issue 3, p541-556. 17p.
In this paper we study gradient Ricci-Harmonic soliton with structure of warped product manifold. We obtain some triviality results for the potential function, warping function and the harmonic map which reaches maximum or minimum. In order to obtain
Externí odkaz:
http://arxiv.org/abs/1906.11933
In this paper we utilize symmetries in order to exhibit exact solutions to Einstein's equation of a perfect fluid on a static manifold all of whose spatial factor belongs to the conformal class of a Riemannian space of constant curvature.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/1905.00114
In this paper, by slightly modifying Li-Yau's technique so that we can handle drifting Laplacians, we were able to find three different gradient estimates for the warping function, one for each sign of the Einstein constant of the fiber manifold. As
Externí odkaz:
http://arxiv.org/abs/1905.00068
In this paper, we look for properties of gradient Yamabe solitons on top of warped product manifolds. Utilizing the maximum principle, we find lower bound estimates for both the potential function of the soliton and the scalar curvature of the warped
Externí odkaz:
http://arxiv.org/abs/1904.08288
The purpose of this article is to study gradient Yamabe soliton on warped product manifolds. First, we prove triviality results in the case of noncompact base with limited warping function, and for compact base. In order to provide nontrivial example
Externí odkaz:
http://arxiv.org/abs/1811.09468
In this paper, we provide a necessary and sufficient conditions for the warped product $M=B\times_f F$ to be a gradient Yamabe soliton when the base is conformal to an n-dimensional pseudo-Euclidean space, which are invariant under the action of an (
Externí odkaz:
http://arxiv.org/abs/1711.11455
In this paper, we prove that if a metric measure space satisfies the volume doubling condition and the Caffarelli-Kohn-Nirenberg inequality with same exponent n(n>1), then it has exactly n-dimensional volume growth. As application, we obtain geometri
Externí odkaz:
http://arxiv.org/abs/1711.04836
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dessordi, Renata, Spirlandeli, Adriano Levi, Zamarioli, Ariane, Volpon, José Batista, Navarro, Anderson Marliere
Publikováno v:
In Journal of Trace Elements in Medicine and Biology January 2017 39:169-175